8 research outputs found

    Study and implementation of laser processes for the development of 3D-System in Package microelectronics

    No full text
    Le 3D-SiP, 3D-System in package, est une branche de la microélectronique visant à intégrer de manière hétérogène divers composants pour obtenir des microsystèmes compacts, pensants et communiquants. Cette thèse a pour objet l'étude de deux procédés laser pour fabriquer des microsystèmes 3D-SiP sur support flexibles. On étudie dans un premier temps l'ablation laser de polymère pour réaliser des cavités dans lesquelles des composants microélectroniques peuvent être placés. On utilise du poly(méthacrylate de méthyle) (PMMA) dopé et greffé avec du pyrène, chromophore absorbant dans l'UV et on montre que, bien que le greffage du chromophore sur les chaînes du polymère améliore l'homogénéité, la qualité de l'ablation est suffisante lorsque le pyrène est simplement dispersé. On modifie également le PMMA avec du N3 pour le rendre réticulable et on constate l'apparition de structures surfaciques périodiques après ablation, dont on explique les mécanismes de formations probables. Dans un second temps, on étudie le dépôt de lignes conductrices par LIFT, Laser-Induced Forward Transfer, technique permettant de transférer par laser un matériau préalablement déposé sur un substrat donneur transparent. On utilise une encre contant des nanoparticules d'argent fusionnant après recuit pour imprimer goutte après goutte des lignes conductrices. On étudie l'éjection et le dépôt d'encre à grande vitesse (0,5 MHz) et on obtient pour la première fois des images d'éjections de plusieurs jets d'encre successifs. On démontre la possibilité d'imprimer des lignes conductrices à la vitesse de 4,3 m/s et on discute les critères clefs pour le contrôle de ce procédé.3D-System in package (3D-SiP) is a branch of microelectronics that aims at integrating several heterogeneous components into the same package, thus forming a compact device able to communicate and process data. The goal of this thesis is to study two laser processes to build 3D-SiP microsystems on flexible substrates. In a first part, we study the laser ablation of cavities in polymer in which microchips can be inserted. We use poly(methyl methacrylate) (PMMA) doped and grafted with pyrene, a chromophore which absorbs in the UV range. We show that grafting the pyrene on the polymer side-chains increases the homogeneity but that the quality of ablation is sufficient when the pyrene is simply dispersed in the matrix. We also modify the PMMA with N3 to make it cross-linkable and we observe the formation of laser-induced periodic surface structures upon laser irradiation. We discuss the mechanism most likely to explain their formation. On a second part, we use the LIFT (laser-induced forward transfer) technique, which uses a laser pulse to print a material deposited on a transparent donnor substrate. Using a silver nanoparticles ink, we deposit droplets that coalesce and form lines. We study the ejection and printing at high speed (0,5 MHz) and we visualize for the first time the ejection of several succesive jets. We show that it is possible to print electrical connections at 4.3 m/s and we discuss the criteria to control the process

    Multi-jets formation using laser forward transfer

    No full text
    5th European-Materials-Research-Society Symposium on Laser Material Interactions for Micro- and Nano- Applications, Strasbourg, FRANCE, MAY 27-31, 2013International audienceThe dynamics of multi-jets formation in liquid films has been investigated using the laser-induced forward transfer (LIFT) technique. This technique allows the deposition of micrometer-sized droplets with a high spatial resolution from a donor substrate to a receiver substrate. The donor was a silver nanoparticles ink-coated substrate. The interaction of the laser pulse with the donor ink layer generates an expanding bubble in the liquid which propels a jet towards the receiver. Silver lines have already been printed by depositing overlapping droplets in a ``low speed'' process. In order to increase the throughput, it is necessary to decrease the time between the depositions of two droplets. By scanning the beam of a high repetition rate UV picosecond laser (343 nm; 30 ps; 500 kHz) with a galvanometric mirror, successive pulses are focused on the silver nanoparticles ink-coated donor substrate. The shape and dynamics of single jets and adjacent jets have been investigated by means of a time-resolved imaging technique. By varying the distance between the laser spots, different behaviours were observed and compared to the printed droplets. A spacing of 25 pin between laser spots was found to generate both stable jets and well-controlled, reproducible droplets at high speed. (C) 2013 Elsevier B.V. All rights reserved

    High-Speed Laser Printing of Silver Nanoparticles Ink

    No full text
    International audienceWe use the laser-induced forward transfer technique to print at high-speed long lines of metallic nanoparticle ink. A picosecond laser emitting at 343 nm with a repetition rate of 500 kHz is used to realize series of droplets and continuous lines by varying the distance between successive laser pulses. We find this latter parameter to be critical to obtain droplets of good quality, and use a time-resolved imaging technique to study its effects on the ink ejection. Single pass, two-pass and three-pass laser printing have been investigated. We have printed millimeter-long continuous silver lines of 20 mu m width and thinner than 500 nm, at velocities up to 4 m/s. This work demonstrates the feasibility of using high repetition rate laser for the fast and reliable printing of conductive lines

    High-speed multi-jets printing using laser forward transfer: time-resolved study of the ejection dynamics

    No full text
    International audienceThis paper extends the current understanding of the laser-induced forward transfer (LIFT) process to the multi-jets ejection problem. LIFT has already been used to print micrometer-sized droplets from a liquid donor substrate with single pulse experiments. Here we study the dynamics of the high-speed multi-jets formation from silver nanoparticles ink films with a time-resolved imaging technique. A galvanometric mirrors head controls the spacing between adjacent pulses by scanning the focused beam of a high repetition rate UV picosecond laser along an ink-coated donor substrate. The laser pulses interact with the liquid film and generate cavitation bubbles that propel the ink away from the substrate and form the jets. When the spacing between consecutive pulses is substantially higher than the maximum diameter of the bubbles, there is no interaction between adjacent jets, and these remain unperturbed. However, when the pulses are brought closer significant jet-jet interaction takes place, which results in a clear deviation from the single jet dynamics. Thus, the cavitation bubbles acquire different shapes, the ink is ejected faster and along different directions depending on the spacing between the pulses, and each bubble alters the evolution of the previous one and shifts away from it. (C) 2014 Optical Society of Americ

    Nanosecond laser-induced periodic surface structuring of cross-linked azo-polymer films

    No full text
    International audienceIn this work we discuss the response to laser ablation of a poly(4-vinylbenzyl azide-random-methyl methacrylate) (p((S-N-3)-r-MMA)) random copolymer. This material is cross-linkable thermally and upon exposure to UV light, and on cross-linked films the irradiation with a 248 nm ns KrF laser induces the formation of laser induced periodical surface structure (LIPSS). The LIPSS morphology is dependent on the amount of 4-vinylbenzyl azide (S-N-3) groups in the pristine copolymer. We propose a crosslinking mechanism based on the scission of azide with formation of azo groups and we discuss the possible relationship between this chemical modifications and the formation of ripples on the bottom of laser ablation cavities. (C) 2013 Elsevier B.V. All rights reserved

    Influence of Pyrene Grafting on PMMA Nanosecond Laser Ablation at 248 nm

    No full text
    International audienceIn this work, we investigate the effects of KrF nanosecond laser ablation on poly(methyl methacrylate) (PMMA) in combination with pyrene. Three materials containing PMMA were studied: (1) one doped with pure pyrene, (2) one doped with methyl 3-(1-pyrenyl)propanoate (so called alkylpyrene derivative thereafter), and (3) one grafted with pyrene. This last new material was developed by covalently bonding pyrene molecules to PMMA side-chains. A comparative study was undertaken to determine and compare the respective properties of the PMMA dye containing pyrene during nanosecond laser ablation at 248 nm. Cavities were etched for each material with up to 20 pulses for fluences between 0.03 and 1.7 J/cm(2) in samples containing 1, 2, and 4 mol % chromophore. The threshold fluences and the effective absorption coefficients were obtained. It was observed that effective absorption coefficients increased and threshold fluences decreased with the chromophore percentages in each kind of sample. Ablation parameters were not significantly modified when the dopant was changed from pyrene to the alkylpyrene derivative. On the other hand, when pyrene molecules were grafted on the polymer, the threshold fluences decreased, whereas the effective absorption coefficients became similar at fluences above 0.6 J/cm(2)

    Influence of Pyrene Grafting on PMMA Nanosecond Laser Ablation at 248 nm

    No full text
    In this work, we investigate the effects of KrF nanosecond laser ablation on poly­(methyl methacrylate) (PMMA) in combination with pyrene. Three materials containing PMMA were studied: (1) one doped with pure pyrene, (2) one doped with methyl 3-(1-pyrenyl)­propanoate (so called alkylpyrene derivative thereafter), and (3) one grafted with pyrene. This last new material was developed by covalently bonding pyrene molecules to PMMA side-chains. A comparative study was undertaken to determine and compare the respective properties of the PMMA dye containing pyrene during nanosecond laser ablation at 248 nm. Cavities were etched for each material with up to 20 pulses for fluences between 0.03 and 1.7 J/cm<sup>2</sup> in samples containing 1, 2, and 4 mol % chromophore. The threshold fluences and the effective absorption coefficients were obtained. It was observed that effective absorption coefficients increased and threshold fluences decreased with the chromophore percentages in each kind of sample. Ablation parameters were not significantly modified when the dopant was changed from pyrene to the alkylpyrene derivative. On the other hand, when pyrene molecules were grafted on the polymer, the threshold fluences decreased, whereas the effective absorption coefficients became similar at fluences above 0.6 J/cm<sup>2</sup>
    corecore