43 research outputs found

    Classical cadherins control nucleus and centrosome position and cell polarity

    Get PDF
    Control of cell polarity is crucial during tissue morphogenesis and renewal, and depends on spatial cues provided by the extracellular environment. Using micropatterned substrates to impose reproducible cell–cell interactions, we show that in the absence of other polarizing cues, cell–cell contacts are the main regulator of nucleus and centrosome positioning, and intracellular polarized organization. In a variety of cell types, including astrocytes, epithelial cells, and endothelial cells, calcium-dependent cadherin-mediated cell–cell interactions induce nucleus and centrosome off-centering toward cell–cell contacts, and promote orientation of the nucleus–centrosome axis toward free cell edges. Nucleus and centrosome off-centering is controlled by N-cadherin through the regulation of cell interactions with the extracellular matrix, whereas the orientation of the nucleus–centrosome axis is determined by the geometry of N-cadherin–mediated contacts. Our results demonstrate that in addition to the specific function of E-cadherin in regulating baso-apical epithelial polarity, classical cadherins control cell polarization in otherwise nonpolarized cells

    A Solve-RD ClinVar-based reanalysis of 1522 index cases from ERN-ITHACA reveals common pitfalls and misinterpretations in exome sequencing

    Get PDF
    Purpose Within the Solve-RD project (https://solve-rd.eu/), the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies aimed to investigate whether a reanalysis of exomes from unsolved cases based on ClinVar annotations could establish additional diagnoses. We present the results of the “ClinVar low-hanging fruit” reanalysis, reasons for the failure of previous analyses, and lessons learned. Methods Data from the first 3576 exomes (1522 probands and 2054 relatives) collected from European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies was reanalyzed by the Solve-RD consortium by evaluating for the presence of single-nucleotide variant, and small insertions and deletions already reported as (likely) pathogenic in ClinVar. Variants were filtered according to frequency, genotype, and mode of inheritance and reinterpreted. Results We identified causal variants in 59 cases (3.9%), 50 of them also raised by other approaches and 9 leading to new diagnoses, highlighting interpretation challenges: variants in genes not known to be involved in human disease at the time of the first analysis, misleading genotypes, or variants undetected by local pipelines (variants in off-target regions, low quality filters, low allelic balance, or high frequency). Conclusion The “ClinVar low-hanging fruit” analysis represents an effective, fast, and easy approach to recover causal variants from exome sequencing data, herewith contributing to the reduction of the diagnostic deadlock

    Entre politique carcérale et ressources personnelles ; parcours de sortie de prison d'anciens détenus du canton de Vaud

    No full text

    Packaging of yield stress fluids: Flow patterns

    No full text
    International audienc

    Transcriptional organization of the large and the small ATP synthase operons, atpI/H/F/A and atpB/E, in Arabidopsis thaliana chloroplasts.

    No full text
    International audienceThe ATP synthase is a ubiquitous enzyme which is found in bacteria and eukaryotic organelles. It is essential in the photosynthetic and respiratory processes, by transforming the electrochemical proton gradient into ATP energy via proton transport across the membranes. In Escherichia coli, the atp genes coding for the subunits of the ATP synthase enzyme are grouped in the same transcriptional unit, while in higher plants the plastid atp genes are organized into a large (atpI/H/F/A) and a small (atpB/E) atp operon. By using the model plant Arabidopsis thaliana, we have investigated the strategy evolved in chloroplasts to overcome the physical separation of the atp gene clusters and to coordinate their transcription. We show that all the identified promoters in the two atp operons are PEP dependent and require sigma factors for specific recognition. Our results indicate that transcription of the two atp operons is initiated by at least one common factor, the essential SIG2 factor. Our data show that SIG3 and SIG6 also participate in transcription initiation of the large and the small atp operon, respectively. We propose that SIG2 might be the factor responsible for coordinating the basal transcription of the plastid atp genes and that SIG3 and SIG6 might serve to modulate plastid atp expression with respect to physiological and environmental conditions. However, we observe that in the sigma mutants (sig2, sig3 and sig6) the deficiency in the recognition of specific atp promoters is largely balanced by mRNA stabilization and/or by activation of otherwise silent promoters, indicating that the rate-limiting step for expression of the atp operons is mostly post-transcriptional
    corecore