58 research outputs found

    Sea surface temperature for climate from the along-track scanning radiometers

    Get PDF
    This thesis describes the construction of a sea surface temperature (SST) dataset from Along-Track Scanning Radiometer (ATSR) observations suitable for climate applications. The algorithms presented here are now used at ESA for reprocessing of historical ATSR data and will be the basis of the retrieval used on the forthcoming SLSTR instrument on ESA’s Sentinel-3 satellite. In order to ensure independence of ATSR SSTs from in situ measurements, the retrieval uses physics-based methods through the use of radiative transfer (RT) simulations. The RT simulations are based on the Reference ForwardModel line-by-line model linked to a new sea surface emissivity model which accounts for surface temperature, wind speed, viewing angle and salinity, and to a discrete ordinates scattering (DISORT) model to account for aerosol. An atmospheric profile dataset, based on full resolution ERA-40 numerical weather prediction (NWP) data, is defined and used as input to the RTmodel. Five atmospheric trace gases (N2O, CH4, HNO3, and CFC-11 and CFC-12) are identified as having temporal and geographical variability which have a significant (∼0.1K) impact on RT simulations. Several additional trace gases neglected in previous studies are included using fixed profiles contributing ∼0.04K to RT simulations. Comparison against ATSR-2 and AATSR observations indicates that RT model biases are reduced from 0.2–0.5K for previous studies to ∼0.1K. A new coefficient-based SST retrieval scheme is developed from the RT simulations. Coefficients are banded by total column water vapour (TCWV) from NWP analyses reducing simulated regional biases to <0.1K compared to ∼0.2K for global coefficients. An improved treatment of the instrument viewing geometry decreases simulated view-angle related biases from ∼0.1K to <0.005K for the day-time dual-view retrieval. To eliminate inter-algorithmbiases due to remaining RT model biases and uncertainty in the characterisation of the ATSR instruments the offset coefficient for each TCWV band is adjusted to match the results from a reference channel combination. As infrared radiometers are sensitive to the skin SST while in situ buoys measure SST at some depth below the surface an adjustment for the skin effect and diurnal stratification is included. The samemodel allows adjustment for the differing time of observation between ATSR-2 and AATSR to prevent the diurnal cycle being aliased into the final record. The RT simulations are harmonised between sensors using a double-difference technique eliminating discontinuities in the final SST record. Comparison against in situ drifting and tropical moored buoys shows the new SST dataset is of high quality. Systematic differences between ATSR retrieved SST and in situ drifters show zonal, regional, TCWV, and wind speed biases are less than 0.1K except for themost extreme cases (TCWV <5 kgm−2). The precision of ATSR retrieved SSTs is ∼0.15 K, lower than the precision ofmeasurement of the global ensemble of in situ drifting buoys. From 1995 onwards the ARC SSTs are stable with instability of less than 5mK year−1 to 95% confidence (demonstrated for tropical regions)

    Adjusting for desert-dust-related biases in a climate data record of sea surface temperature

    Get PDF
    Atmospheric desert-dust aerosol, primarily from north Africa, causes negative biases in remotely sensed climate data records of sea surface temperature (SST). Here, large-scale bias adjustments are deduced and applied to the v2 climate data record of SST from the European Space Agency Climate Change Initiative (CCI). Unlike SST from infrared sensors, SST measured in situ is not prone to desert-dust bias. An in-situ-based SST analysis is combined with column dust mass from the Modern-Era Retrospective analysis for Research and Applications, Version 2 to deduce a monthly, large-scale adjustment to CCI analysis SSTs. Having reduced the dust-related biases, a further correction for some periods of anomalous satellite calibration is also derived. The corrections will increase the usability of the v2 CCI SST record for oceanographic and climate applications, such as understanding the role of Arabian Sea SSTs in the Indian monsoon. The corrections will also pave the way for a v3 climate data record with improved error characteristics with respect to atmospheric dust aerosol

    Stability assessment of the (A)ATSR sea surface temperature climate dataset from the European Space Agency Climate Change Initiative

    Get PDF
    Sea surface temperature is a key component of the climate record, with multiple independent records giving confidence in observed changes. As part of the European Space Agencies (ESA) Climate Change Initiative (CCI) the satellite archives have been reprocessed with the aim of creating a new dataset that is independent of the in situ observations, and stable with no artificial drift (<0.1 K decade−1 globally) or step changes. We present a method to assess the satellite sea surface temperature (SST) record for step changes using the Penalized Maximal t Test (PMT) applied to aggregate time series. We demonstrated the application of the method using data from version EXP1.8 of the ESA SST CCI dataset averaged on a 7 km grid and in situ observations from moored buoys, drifting buoys and Argo floats. The CCI dataset was shown to be stable after ~1994, with minimal divergence (~0.01 K decade−1) between the CCI data and in situ observations. Two steps were identified due to the failure of a gyroscope on the ERS-2 satellite, and subsequent correction mechanisms applied. These had minimal impact on the stability due to having equal magnitudes but opposite signs. The statistical power and false alarm rate of the method were assessed

    The role of Advanced Microwave Scanning Radiometer 2 channels within an optimal estimation scheme for sea surface temperature

    Get PDF
    We present an analysis of information content for sea surface temperature (SST) retrieval from the Advanced Microwave Scanning Radiometer 2 (AMSR2). We find that SST uncertainty of ∼0.37 K can be achieved within an optimal estimation framework in the presence of wind, water vapour and cloud liquid water effects, given appropriate assumptions for instrumental uncertainty and prior knowledge, and using all channels. We test all possible combinations of AMSR2 channels and demonstrate the importance of including cloud liquid water in the retrieval vector. The channel combinations, with the minimum number of channels, that carry most SST information content are calculated, since in practice calibration error drives a trade-off between retrieved SST uncertainty and the number of channels used. The most informative set of five channels is 6.9 V, 6.9 H, 7.3 V, 10.7 V and 36.5 H and these are suitable for optimal estimation retrievals. We discuss the relevance of microwave SSTs and issues related to them compared to SSTs derived from infra-red observations

    Sea surface temperature in global analyses: gains from the copernicus imaging microwave radiometer

    Get PDF
    Sea surface temperatures (SSTs) derived from passive microwave (PMW) observations benefit global ocean and SST analyses because of their near-all-weather availability. Present PMW SSTs have a real aperture-limited spatial resolution in excess of 50 km, limiting the spatial fidelity with which SST features, reflecting ocean dynamics, can be captured. This contrasts with the target resolution of global analyses of 5 to 10 km. The Copernicus Imaging Microwave Radiometer (CIMR) is a mission concept under consideration as a high-priority candidate mission for the expansion of the Copernicus space programme. This instrument would be capable of real aperture resolution < 15 km with low total uncertainties in the range 0.4–0.8 K for channels between 1.4 and 36.5 GHz, and a dual-view arrangement that further reduces noise. This paper provides a comparative study of SST uncertainty and feature resolution with and without the availability of CIMR in the future SST-observing satellite constellation based on a detailed simulation of CIMR plus infrared observations and the processing of global SST analyses with 0.05◦ final grid resolution. Simulations of CIMR data including structured errors were added to an observing system consisting of the Sea and Land Surface Temperature Radiometer (SLSTR) on Sentinel-3A and the Advanced Very High Resolution Radiometer (AVHRR) on MetOp-A. This resulted in a large improvement in the global root-mean-square error (RMSE) for SST from 0.37 K to 0.21 K for January and 0.40 K to 0.25 K for July. There was a particularly noticeable improvement in the performance of the analysis, as measured by the reduction in RMSE, for dynamical and persistently cloudy areas. Of these, the Aghulas Current showed an improvement of 43% in January and 48% in July, the Gulf Stream showed 70% and 44% improvements, the Southern Ocean showed 57% and 74% improvements, and the Maritime Continent showed 50% and 40% improvements, respectively
    corecore