276 research outputs found
An early Little Ice Age brackish water invasion along the south coast of the Caspian Sea (sediment of Langarud wetland) and its wider impacts on environment and people
Caspian Sea level has undergone significant changes through time with major impacts not only on the surrounding coasts, but also offshore. This study reports a brackish water invasion on the southern coast of the Caspian Sea constructed from a multi-proxy analysis of sediment retrieved from the Langarud wetland. The ground surface level of wetland is >6 m higher than the current Caspian Sea level (at -27.41 m in 2014) and located >11 km far from the coast. A sequence covering the last millennium was dated by three radiocarbon dates. The results from this new study suggest that Caspian Sea level rose up to at least -21.44 m (i.e. >6 m above the present water level) during the early Little Ice Age. Although previous studies in the southern coast of the Caspian Sea have detected a high-stand during the Little Ice Age period, this study presents the first evidence that this high-stand reached so far inland and at such a high altitude. Moreover, it confirms one of the very few earlier estimates of a high-stand at -21 m for the second half of the 14th century. The effects of this large-scale brackish water invasion on soil properties would have caused severe disruption to regional agriculture, thereby destabilizing local dynasties and facilitating a rapid Turko-Mongol expansion of Tamerlane’s armies from the east.N Ghasemi (INIOAS), V Jahani (Gilan Province Cultural Heritage and Tourism Organisation) and A Naqinezhad (University of Mazandaran), INQUA QuickLakeH project (no. 1227) and to the European project Marie Curie, CLIMSEAS-PIRSES-GA-2009-24751
Software Compensation for Highly Granular Calorimeters using Machine Learning
A neural network for software compensation was developed for the highly
granular CALICE Analogue Hadronic Calorimeter (AHCAL). The neural network uses
spatial and temporal event information from the AHCAL and energy information,
which is expected to improve sensitivity to shower development and the neutron
fraction of the hadron shower. The neural network method produced a
depth-dependent energy weighting and a time-dependent threshold for enhancing
energy deposits consistent with the timescale of evaporation neutrons.
Additionally, it was observed to learn an energy-weighting indicative of
longitudinal leakage correction. In addition, the method produced a linear
detector response and outperformed a published control method regarding
resolution for every particle energy studied
Software compensation for highly granular calorimeters using machine learning
A neural network for software compensation was developed for the highly granular CALICE Analogue Hadronic Calorimeter (AHCAL). The neural network uses spatial and temporal event information from the AHCAL and energy information, which is expected to improve sensitivity to shower development and the neutron fraction of the hadron shower. The neural network method produced a depth-dependent energy weighting and a time-dependent threshold for enhancing energy deposits consistent with the timescale of evaporation neutrons. Additionally, it was observed to learn an energy-weighting indicative of longitudinal leakage correction. In addition, the method produced a linear detector response and outperformed a published control method regarding resolution for every particle energy studied
Design, construction and commissioning of a technological prototype of a highly granular SiPM-on-tile scintillator-steel hadronic calorimeter
The CALICE collaboration is developing highly granular electromagnetic and hadronic calorimeters for detectors at future energy frontier electron-positron colliders. After successful tests of a physics prototype, a technological prototype of the Analog Hadron Calorimeter has been built, based on a design and construction techniques scalable to a collider detector. The prototype consists of a steel absorber structure and active layers of small scintillator tiles that are individually read out by directly coupled SiPMs. Each layer has an active area of 72 × 72 cm^2 and a tile size of 3 × 3 cm^2. With 38 active layers, the prototype has nearly 22,000 readout channels, and its total thickness amounts to 4.4 nuclear interaction lengths. The dedicated readout electronics provide time stamping of each hit with an expected resolution of about 1 ns. The prototype was constructed in 2017 and commissioned in beam tests at DESY. It recorded muons, hadron showers and electron showers at different energies in test beams at CERN in 2018. In this paper, the design of the prototype, its construction and commissioning are described. The methods used to calibrate the detector are detailed, and the performance achieved in terms of uniformity and stability is presented
Detector Technologies for CLIC
The Compact Linear Collider (CLIC) is a high-energy high-luminosity linear
electron-positron collider under development. It is foreseen to be built and
operated in three stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3
TeV, respectively. It offers a rich physics program including direct searches
as well as the probing of new physics through a broad set of precision
measurements of Standard Model processes, particularly in the Higgs-boson and
top-quark sectors. The precision required for such measurements and the
specific conditions imposed by the beam dimensions and time structure put
strict requirements on the detector design and technology. This includes
low-mass vertexing and tracking systems with small cells, highly granular
imaging calorimeters, as well as a precise hit-time resolution and power-pulsed
operation for all subsystems. A conceptual design for the CLIC detector system
was published in 2012. Since then, ambitious R&D programmes for silicon vertex
and tracking detectors, as well as for calorimeters have been pursued within
the CLICdp, CALICE and FCAL collaborations, addressing the challenging detector
requirements with innovative technologies. This report introduces the
experimental environment and detector requirements at CLIC and reviews the
current status and future plans for detector technology R&D.Comment: 152 pages, 116 figures; published as CERN Yellow Report Monograph
Vol. 1/2019; corresponding editors: Dominik Dannheim, Katja Kr\"uger, Aharon
Levy, Andreas N\"urnberg, Eva Sickin
The eROSITA X-ray telescope on SRG
eROSITA (extended ROentgen Survey with an Imaging Telescope Array) is the primary instrument on the Spectrum-Roentgen-Gamma (SRG) mission, which was successfully launched on July 13, 2019, from the Baikonour cosmodrome. After the commissioning of the instrument and a subsequent calibration and performance verification phase, eROSITA started a survey of the entire sky on December 13, 2019. By the end of 2023, eight complete scans of the celestial sphere will have been performed, each lasting six months. At the end of this program, the eROSITA all-sky survey in the soft X-ray band (0.2-2.3 keV) will be about 25 times more sensitive than the ROSAT All-Sky Survey, while in the hard band (2.3-8 keV) it will provide the first ever true imaging survey of the sky. The eROSITA design driving science is the detection of large samples of galaxy clusters up to redshifts z > 1 in order to study the large-scale structure of the universe and test cosmological models including Dark Energy. In addition, eROSITA is expected to yield a sample of a few million AGNs, including obscured objects, revolutionizing our view of the evolution of supermassive black holes. The survey will also provide new insights into a wide range of astrophysical phenomena, including X-ray binaries, active stars, and diffuse emission within the Galaxy. Results from early observations, some of which are presented here, confirm that the performance of the instrument is able to fulfil its scientific promise. With this paper, we aim to give a concise description of the instrument, its performance as measured on ground, its operation in space, and also the first results from in-orbit measurements
Performance of the CMS High Granularity Calorimeter prototype to charged pion beams of 20300 GeV/c
The upgrade of the CMS experiment for the high luminosity operation of the
LHC comprises the replacement of the current endcap calorimeter by a high
granularity sampling calorimeter (HGCAL). The electromagnetic section of the
HGCAL is based on silicon sensors interspersed between lead and copper (or
copper tungsten) absorbers. The hadronic section uses layers of stainless steel
as an absorbing medium and silicon sensors as an active medium in the regions
of high radiation exposure, and scintillator tiles directly readout by silicon
photomultipliers in the remaining regions. As part of the development of the
detector and its readout electronic components, a section of a silicon-based
HGCAL prototype detector along with a section of the CALICE AHCAL prototype was
exposed to muons, electrons and charged pions in beam test experiments at the
H2 beamline at the CERN SPS in October 2018. The AHCAL uses the same technology
as foreseen for the HGCAL but with much finer longitudinal segmentation. The
performance of the calorimeters in terms of energy response and resolution,
longitudinal and transverse shower profiles is studied using negatively charged
pions, and is compared to GEANT4 predictions. This is the first report
summarizing results of hadronic showers measured by the HGCAL prototype using
beam test data.Comment: To be submitted to JINS
Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment
The Deep Underground Neutrino Experiment (DUNE) will produce world-leading
neutrino oscillation measurements over the lifetime of the experiment. In this
work, we explore DUNE's sensitivity to observe charge-parity violation (CPV) in
the neutrino sector, and to resolve the mass ordering, for exposures of up to
100 kiloton-megawatt-years (kt-MW-yr). The analysis includes detailed
uncertainties on the flux prediction, the neutrino interaction model, and
detector effects. We demonstrate that DUNE will be able to unambiguously
resolve the neutrino mass ordering at a 3 (5) level, with a 66
(100) kt-MW-yr far detector exposure, and has the ability to make strong
statements at significantly shorter exposures depending on the true value of
other oscillation parameters. We also show that DUNE has the potential to make
a robust measurement of CPV at a 3 level with a 100 kt-MW-yr exposure
for the maximally CP-violating values \delta_{\rm CP}} = \pm\pi/2.
Additionally, the dependence of DUNE's sensitivity on the exposure taken in
neutrino-enhanced and antineutrino-enhanced running is discussed. An equal
fraction of exposure taken in each beam mode is found to be close to optimal
when considered over the entire space of interest
- …