212 research outputs found
Mena, a new available marker in tumors of salivary glands?
Mena (mammalian Ena) is an actin regulatory protein involved in cell motility and adhesion. Based on its potential role in malignant transformation revealed in other organs, we analyzed the Mena expression in normal salivary glands (SG) and salivary tumors. Mena expression was determined in normal SG (n=10) and also benign (n=20) and malignant (n=35) lesions of SG. For the immunohistochemical staining we used the anti-Mena antibody. All normal SG and the benign lesions (10 pleomorphic adenomas, 10 Warthin's tumors) were Mena negative. Salivary duct carcinomas (n=5), carcinomas in pleomorphic adenoma (n=5), acinic cell carcinomas (n=5), squamous cell carcinomas (n=10) and high-grade mucoepidermoid carcinomas (n=2) were positive. The lymphomas (n=5) and low-grade mucoepidermoid carcinomas (n=1) were Mena negative. In one case the lymphoblastic cells stained positive for Mena. Some of the endothelial cells, in the peritumoral vessels, were Mena positive. To the best of our knowledge, this is the first study in the literature about Mena expression in salivary tumors. Our study suggests that Mena protein seems to play a role in malignant transformation and its intensity is correlated with the type and grade of tumor and also with vascular invasion. Its positivity in endothelial cells may suggest its potential role in tumor angiogenesis
Presence of stolbur phytoplasma in Cixiidae in Hungarian vineyards
Bois Noir (16SrXII-A) phytoplasmas were identified in three viticultural areas of Hungary in 18 % of Hyalesthes obsoletus, and in an asymptomatic nettle sample. The cixiid Reptalus panzeri was found to be infected with 16SrXII-A and with 16SrIII (X-disease) phytoplasmas. The latter pathogen was also detected in symptomatic wild Cirsium spp. and Convolvolus collected inside Bois Noir-infected and R. panzeri-infested vineyards
Conventional PCR primers for the detection of grapevine pathogens disseminated by propagating material
Polymerase chain reaction driven by sequence specific primers has become the most widely used diagnostic method to detect andidentify plant pathogens. The sensitive and cost-effective pathogen detection is exceptionally important in the production of propagatingmaterial. In this paper we have collected primer sequence data from the literature for the detection of the most important grapevine pathogensdisseminated by propagating stocks by conventional polymerase chain reaction. Basic protocols to obtain template nucleic acids have alsobeen briefly rewieved
Primers designed for the detection of grapevine pathogens spreading with propagating material by quantitative real-time PCR
Several grapevine pathogens are disseminated by propagating material as systemic, but latent infections. Their detection andidentification have a basic importance in the production and handling of propagating stocks. Thus several sensitive and reliable diagnosticprotocols mostly based on molecular techniques have been developed. Of these methods quantitative real-time PCR (q-PCR) has recently gotan emerging importance. Here we collected primer data for the detection and identification of grapevine pathogens which are important inthe production of propagating stocks by q-PCR. Additional novel techniques that use DNA amplification, hybridization and sequencing arealso briefly reviewed
When a Palearctic bacterium meets a Nearctic insect vector: Genetic and ecological insights into the emergence of the grapevine Flavescence dorée epidemics in Europe
Flavescence dorée (FD) is a European quarantine grapevine disease transmitted by the Deltocephalinae leafhopper Scaphoideus titanus. Whereas this vector had been introduced from North America, the possible European origin of FD phytoplasma needed to be challenged and correlated with ecological and genetic drivers of FD emergence. For that purpose, a survey of genetic diversity of these phytoplasmas in grapevines, S. titanus, black alders, alder leafhoppers and clematis were conducted in five European countries. Out of 132 map genotypes, only 11 were associated to FD outbreaks, three were detected in clematis, whereas 127 were detected in alder trees, alder leafhoppers or in grapevines out of FD outbreaks. Most of the alder trees were found infected, including 8% with FD genotypes M6, M38 and M50, also present in alders neighboring FD-free vineyards and vineyard-free areas. The Macropsinae Oncopsis alni could transmit genotypes unable to achieve transmission by S. titanus, while the Deltocephalinae Allygus spp. and Orientus ishidae transmitted M38 and M50 that proved to be compatible with S. titanus. Variability of vmpA and vmpB adhesin-like genes clearly discriminated 3 genetic clusters. Cluster Vmp-I grouped genotypes only transmitted by O. alni, while clusters Vmp-II and -III grouped genotypes transmitted by Deltocephalinae leafhoppers. Interestingly, adhesin repeated domains evolved independently in cluster Vmp-I, whereas in clusters Vmp-II and-III showed recent duplications. Latex beads coated with various ratio of VmpA of clusters II and I, showed that cluster II VmpA promoted enhanced adhesion to the Deltocephalinae Euscelidius variegatus epithelial cells and were better retained in both E. variegatus and S. titanus midguts. Our data demonstrate that most FD phytoplasmas are endemic to European alders. Their emergence as grapevine epidemic pathogens appeared restricted to some genetic variants pre-existing in alders, whose compatibility to S. titanus correlates with different vmp gene sequences and VmpA binding properties
A mechanism for the inhibition of DNA-PK-mediated DNA sensing by a virus
The innate immune system is critical in the response to infection by pathogens and it is activated by pattern recognition receptors (PRRs) binding to pathogen associated molecular patterns (PAMPs). During viral infection, the direct recognition of the viral nucleic acids, such as the genomes of DNA viruses, is very important for activation of innate immunity. Recently, DNA-dependent protein kinase (DNA-PK), a heterotrimeric complex consisting of the Ku70/Ku80 heterodimer and the catalytic subunit DNA-PKcs was identified as a cytoplasmic PRR for DNA that is important for the innate immune response to intracellular DNA and DNA virus infection. Here we show that vaccinia virus (VACV) has evolved to inhibit this function of DNA-PK by expression of a highly conserved protein called C16, which was known to contribute to virulence but by an unknown mechanism. Data presented show that C16 binds directly to the Ku heterodimer and thereby inhibits the innate immune response to DNA in fibroblasts, characterised by the decreased production of cytokines and chemokines. Mechanistically, C16 acts by blocking DNA-PK binding to DNA, which correlates with reduced DNA-PK-dependent DNA sensing. The C-terminal region of C16 is sufficient for binding Ku and this activity is conserved in the variola virus (VARV) orthologue of C16. In contrast, deletion of 5 amino acids in this domain is enough to knockout this function from the attenuated vaccine strain modified vaccinia virus Ankara (MVA). In vivo a VACV mutant lacking C16 induced higher levels of cytokines and chemokines early after infection compared to control viruses, confirming the role of this virulence factor in attenuating the innate immune response. Overall this study describes the inhibition of DNA-PK-dependent DNA sensing by a poxvirus protein, adding to the evidence that DNA-PK is a critical component of innate immunity to DNA viruses
Spectral effects and enhancement quantification in healthy human saliva with surface-enhanced Raman spectroscopy using silver nanopillar substrates
ABSTRACT: Objectives Raman spectroscopy as a diagnostic tool for biofluid applications is limited by low inelastic scattering contributions compared to the fluorescence background from biomolecules. Surface-enhanced Raman spectroscopy (SERS) can increase Raman scattering signals, thereby offering the potential to reduce imaging times. We aimed to evaluate the enhancement related to the plasmonic effect and quantify the improvements in terms of spectral quality associated with SERS measurements in human saliva. Methods Dried human saliva was characterized using spontaneous Raman spectroscopy and SERS. A fabrication protocol was implemented leading to the production of silver (Ag) nanopillar substrates by glancing angle deposition. Two different imaging systems were used to interrogate saliva from 161 healthy donors: a custom single-point macroscopic system and a Raman micro-spectroscopy instrument. Quantitative metrics were established to compare spontaneous RS and SERS measurements: the Raman spectroscopy quality factor (QF), the photonic count rate (PR), the signal-to-background ratio (SBR). Results SERS measurements acquired with an excitation energy four times smaller than with spontaneous RS resulted in improved QF, PR values an order of magnitude larger and a SBR twice as large. The SERS enhancement reached 100×, depending on which Raman bands were considered. Conclusions Single-point measurement of dried saliva with silver nanopillars substrates led to reproducible SERS measurements, paving the way to real-time tools of diagnosis in human biofluids
Recommended from our members
The 'knowledge politics' of democratic peace theory
How do academic ideas influence US foreign policy, under what conditions and with what consequences? This article traces the rise, ‘securitisation’ and political consequences of democratic peace theory (DPT) in the United States by exploring the work of Doyle, Diamond and Fukuyama. Ideas influence US foreign policy under different circumstances, but are most likely to do either during and after crises when the policy environment permits ‘new thinking’, or when these ideas have been developed through state-connected elite knowledge networks, or when they are (or appear paradigmatically congenial to) foreign policymakers’ mindsets, or, finally, when they become institutionally-embedded. The appropriation of DPT by foreign policymakers has categorised the world into antagonistic blocs – democratic/non-democratic zones of peace/turmoil – as the corollary to a renewed American mission to make the world ‘safer’ through ‘democracy’ promotion. The roles of networked organic intellectuals – in universities and think tanks, for instance – were particularly important in elevating DPT from the academy to national security managers
- …