86 research outputs found

    Complex lapse, complex action and path integrals

    Get PDF
    Imaginary time is often used in quantum tunnelling calculations. This article advocates a conceptually sounder alternative: complex lapse. In the ``3+1'' action for the Einstein gravitational field minimally coupled to a Klein-Gordon field, allowing the lapse function to be complex yields a complex action which generates both the usual Lorentzian theory and its Riemannian analogue, and in particular allows a change of signature between the two. The action and variational equations are manifestly well defined in the Hamiltonian representation, with the momentum fields consequently being complex. The complex action interpolates between the Lorentzian and Riemannian actions as they appear formally in the respective path integrals. Thus the complex-lapse theory provides a unified basis for a path-integral quantum theory of gravity involving both Lorentzian and Riemannian aspects. A major motivation is the quantum-tunnelling scenario for the origin of the universe. Taken as an explanation for the observed quantum tunnelling of particles, the complex-lapse theory determines that the argument of the lapse for the universe now is extremely small but negative.Comment: 12 pages, Te

    The trace left by signature-change-induced compactification

    Get PDF
    Recently, it has been shown that an infinite succession of classical signature changes (''signature oscillations'') can compactify and stabilize internal dimensions, and simultaneously leads, after a coarse graining type of average procedure, to an effective (''physical'') space-time geometry displaying the usual Lorentzian metric signature. Here, we consider a minimally coupled scalar field on such an oscillating background and study its effective dynamics. It turns out that the resulting field equation in four dimensions contains a coupling to some non-metric structure, the imprint of the ''microscopic'' signature oscillations on the effective properties of matter. In a multidimensional FRW model, this structure is identical to a massive scalar field evolving in its homogeneous mode.Comment: 15 pages, LaTeX, no figure

    Comment on `Smooth and Discontinuous Signature Type Change in General Relativity'

    Get PDF
    Kossowski and Kriele derived boundary conditions on the metric at a surface of signature change. We point out that their derivation is based not only on certain smoothness assumptions but also on a postulated form of the Einstein field equations. Since there is no canonical form of the field equations at a change of signature, their conclusions are not inescapable. We show here that a weaker formulation is possible, in which less restrictive smoothness assumptions are made, and (a slightly different form of) the Einstein field equations are satisfied. In particular, in this formulation it is possible to have a bounded energy-momentum tensor at a change of signature without satisfying their condition that the extrinsic curvature vanish.Comment: Plain TeX, 6 pages; Comment on Kossowski and Kriele: Class. Quantum Grav. 10, 2363 (1993); Reply by Kriele: Gen. Rel. Grav. 28, 1409-1413 (1996

    BOUNDARY CONDITIONS FOR THE SCALAR FIELD IN THE PRESENCE OF SIGNATURE CHANGE

    Get PDF
    We show that, contrary to recent criticism, our previous work yields a reasonable class of solutions for the massless scalar field in the presence of signature change.Comment: 11 pages, Plain Tex, no figure

    Actions for signature change

    Get PDF
    This is a contribution on the controversy about junction conditions for classical signature change. The central issue in this debate is whether the extrinsic curvature on slices near the hypersurface of signature change has to be continuous ({\it weak} signature change) or to vanish ({\it strong} signature change). Led by a Lagrangian point of view, we write down eight candidate action functionals S1S_1,\dots S8S_8 as possible generalizations of general relativity and investigate to what extent each of these defines a sensible variational problem, and which junction condition is implied. Four of the actions involve an integration over the total manifold. A particular subtlety arises from the precise definition of the Einstein-Hilbert Lagrangian density ∣g∣1/2R[g]|g|^{1/2} R[g]. The other four actions are constructed as sums of integrals over singe-signature domains. The result is that {\it both} types of junction conditions occur in different models, i.e. are based on different first principles, none of which can be claimed to represent the ''correct'' one, unless physical predictions are taken into account. From a point of view of naturality dictated by the variational formalism, {\it weak} signature change is slightly favoured over {\it strong} one, because it requires less {\it \`a priori} restrictions for the class of off-shell metrics. In addition, a proposal for the use of the Lagrangian framework in cosmology is made.Comment: 36 pages, LaTeX, no figures; some corrections have been made, several Comments and further references are included and a note has been added

    Closed Strings with Low Harmonics and Kinks

    Full text link
    Low-harmonic formulas for closed relativistic strings are given. General parametrizations are presented for the addition of second- and third-harmonic waves to the fundamental wave. The method of determination of the parametrizations is based upon a product representation found for the finite Fourier series of string motion in which the constraints are automatically satisfied. The construction of strings with kinks is discussed, including examples. A procedure is laid out for the representation of kinks that arise from self-intersection, and subsequent intercommutation, for harmonically parametrized cosmic strings.Comment: 39, CWRUTH-93-

    Bohmian arrival time without trajectories

    Full text link
    The computation of detection probabilities and arrival time distributions within Bohmian mechanics in general needs the explicit knowledge of a relevant sample of trajectories. Here it is shown how for one-dimensional systems and rigid inertial detectors these quantities can be computed without calculating any trajectories. An expression in terms of the wave function and its spatial derivative, both restricted to the boundary of the detector's spacetime volume, is derived for the general case, where the probability current at the detector's boundary may vary its sign.Comment: 20 pages, 12 figures; v2: reference added, extended introduction, published versio

    Particle creation and non-adiabatic transitions in quantum cosmology

    Get PDF
    The aim of this paper is to compute transitions amplitudes in quantum cosmology, and in particular pair creation amplitudes and radiative transitions. To this end, we apply a double adiabatic development to the solutions of the Wheeler-DeWitt equation restricted to mini-superspace wherein gravity is described by the scale factor aa. The first development consists in working with instantaneous eigenstates, in aa, of the matter Hamiltonian. The second development is applied to the gravitational part of the wave function and generalizes the usual WKB approximation. We then obtain an exact equation which replaces the Wheeler-DeWitt equation and determines the evolution, i.e. the dependence in aa, of the coefficients of this double expansion. When working in the gravitational adiabatic approximation, the simplified equation delivers the unitary evolution of transition amplitudes occurring among instantaneous eigenstates. Upon abandoning this approximation, one finds that there is an additional coupling among matter states living in expanding and contracting universes. Moreover one has to face also the Klein paradox, i.e. the generation of backward waves from an initially forward wave. The interpretation and the consequences of these unusual features are only sketched in the present paper. Finally, the examples of pair creation and radiative transitions are analyzed in detail to establish when and how the above mentioned unitary evolution coincides with the Schr\" odinger evolution.Comment: 27 pages, Late

    Dimensionality, topology, energy, the cosmological constant, and signature change

    Get PDF
    Using the concept of real tunneling configurations (classical signature change) and nucleation energy, we explore the consequences of an alternative minimization procedure for the Euclidean action in multiple-dimensional quantum cosmology. In both standard Hartle-Hawking type as well as Coleman type wormhole-based approaches, it is suggested that the action should be minimized among configurations of equal energy. In a simplified model, allowing for arbitrary products of spheres as Euclidean solutions, the favoured space-time dimension is 4, the global topology of spacelike slices being S1×S2{\bf S}^1 \times {\bf S}^2 (hence predicting a universe of Kantowski-Sachs type). There is, however, some freedom for a Kaluza-Klein scenario, in which case the observed spacelike slices are S3{\bf S}^3. In this case, the internal space is a product of two-spheres, and the total space-time dimension is 6, 8, 10 or 12.Comment: 34 pages, LaTeX, no figure

    Compactification and signature transition in Kaluza-Klein spinor cosmology

    Get PDF
    We study the classical and quantum cosmology of a 4+1-dimensional space-time with a non-zero cosmological constant coupled to a self interacting massive spinor field. We consider a spatially flat Robertson-Walker universe with the usual scale factor R(t)R(t) and an internal scale factor a(t)a(t) associated with the extra dimension. For a free spinor field the resulting equations admit exact solutions, whereas for a self interacting spinor field one should resort to a numerical method for exhibiting their behavior. These solutions give rise to a degenerate metric and exhibit signature transition from a Euclidean to a Lorentzian domain. Such transitions suggest a compactification mechanism for the internal and external scale factors such that a∌R−1a\sim R^{-1} in the Lorentzian region. The corresponding quantum cosmology and the ensuing Wheeler-DeWitt equation have exact solutions in the mini-superspace when the spinor field is free, leading to wavepackets undergoing signature change. The question of stabilization of the extra dimension is also discussed.Comment: 12 pages, 1 figure, to appear in Annals of Physic
    • 

    corecore