Imaginary time is often used in quantum tunnelling calculations. This article
advocates a conceptually sounder alternative: complex lapse. In the ``3+1''
action for the Einstein gravitational field minimally coupled to a Klein-Gordon
field, allowing the lapse function to be complex yields a complex action which
generates both the usual Lorentzian theory and its Riemannian analogue, and in
particular allows a change of signature between the two. The action and
variational equations are manifestly well defined in the Hamiltonian
representation, with the momentum fields consequently being complex. The
complex action interpolates between the Lorentzian and Riemannian actions as
they appear formally in the respective path integrals. Thus the complex-lapse
theory provides a unified basis for a path-integral quantum theory of gravity
involving both Lorentzian and Riemannian aspects. A major motivation is the
quantum-tunnelling scenario for the origin of the universe. Taken as an
explanation for the observed quantum tunnelling of particles, the complex-lapse
theory determines that the argument of the lapse for the universe now is
extremely small but negative.Comment: 12 pages, Te