19 research outputs found

    LEDs: Sources and Intrinsically Bandwidth-Limited Detectors

    Get PDF
    The increasing demand for light emitting diodes (LEDs) is driven by a number of application categories, including display backlighting, communications, signage, and general illumination. Nowadays, they have also become attractive candidates as new photometric standards. In recent years, LEDs have started to be applied as wavelength-selective photo-detectors as well. Nevertheless, manufacturers' datasheets are limited about LEDs used as sources in terms of degradation with operating time (aging) or shifting of the emission spectrum as a function of the forward current. On the contrary, as far as detection is concerned, information about spectral responsivity of LEDs is missing. We investigated, mainly from a radiometric point of view, more than 50 commercial LEDs of a wide variety of wavelength bands, ranging from ultraviolet (UV) to near infrared (NIR). Originally, the final aim was to find which LEDs could better work together as detector-emitter pairs for the creation of self-calibrating ground-viewing LED radiometers; however, the findings that we are sharing here following, have a general validity that could be exploited in several sensing applications

    Aluminum-Titanium Bilayer for Near-Infrared Transition Edge Sensors

    Get PDF
    Transition-edge sensors (TESs) are single photon detectors attractive for applications in quantum optics and quantum information experiments owing to their photon number resolving capability. Nowadays, high-energy resolution TESs for telecommunication are based on either W or Au/Ti films, demonstrating slow recovery time constants. We report our progress on the development of an Al/Ti TES. Since bulk aluminum has a critical temperature (Tc) of ca. 1.2 K and a sufficiently low specific heat (less than 10(-4) J/cm³K²), it can be employed to produce the sensitive material for optical TESs. Furthermore, exploiting its high Tc, Al-based TESs can be trimmed in a wider temperature range with respect to Ti or W. A first Al/Ti TES with a Tc ≈ 142 mK, investigated from a thermal and optical point of view, has shown a response time constant of about 2 μs and single photon discrimination with 0.34 eV energy resolution at telecom wavelength, demonstrating that Al/Ti films are suitable to produce TESs for visible and NIR photon counting.Transition-edge sensors (TESs) are single photon detectors attractive for applications in quantum optics and quantum information experiments owing to their photon number resolving capability. Nowadays, high-energy resolution TESs for telecommunication are based on either W or Au/Ti films, demonstrating slow recovery time constants. We report our progress on the development of an Al/Ti TES. Since bulk aluminum has a critical temperature (Tc) of ca. 1.2 K and a sufficiently low specific heat (less than 10(-4) J/cm³K²), it can be employed to produce the sensitive material for optical TESs. Furthermore, exploiting its high Tc, Al-based TESs can be trimmed in a wider temperature range with respect to Ti or W. A first Al/Ti TES with a Tc ≈ 142 mK, investigated from a thermal and optical point of view, has shown a response time constant of about 2 μs and single photon discrimination with 0.34 eV energy resolution at telecom wavelength, demonstrating that Al/Ti films are suitable to produce TESs for visible and NIR photon counting

    Micro-SQUIDs based on MgB2 nano-bridges for NEMS readout

    Get PDF
    We show the results obtained from the fabrication and characterisation of MgB2 loops with two nano-bridges as superconducting weak links. These ring structures are made to operate as superconducting quantum interference devices and are investigated as readout system for cryogenics NEMS resonators. The nano-constrictions are fabricated by EBL and ion beam milling. The SQUIDs are characterised at different temperatures and measurements of the noise levels have been performed. The devices show high critical current densities and voltage modulations under applied magnetic field, close to the critical temperatures

    Quantum characterization of superconducting photon counters

    Get PDF
    We address the quantum characterization of photon counters based on transition-edge sensors (TESs) and present the first experimental tomography of the positive operator-valued measure (POVM) of a TES. We provide the reliable tomographic reconstruction of the POVM elements up to 11 detected photons and M=100 incoming photons, demonstrating that it is a linear detector.Comment: 3 figures, NJP (to appear

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Get PDF
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory. Athena is a versatile observatory designed to address the Hot and Energetic Universe science theme, as selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), X-IFU aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over a hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR (i.e. in the course of its preliminary definition phase, so-called B1), browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters, such as the instrument efficiency, spectral resolution, energy scale knowledge, count rate capability, non X-ray background and target of opportunity efficiency. Finally, we briefly discuss the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, touch on communication and outreach activities, the consortium organisation and the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. The X-IFU will be provided by an international consortium led by France, The Netherlands and Italy, with ESA member state contributions from Belgium, Czech Republic, Finland, Germany, Poland, Spain, Switzerland, with additional contributions from the United States and Japan.The French contribution to X-IFU is funded by CNES, CNRS and CEA. This work has been also supported by ASI (Italian Space Agency) through the Contract 2019-27-HH.0, and by the ESA (European Space Agency) Core Technology Program (CTP) Contract No. 4000114932/15/NL/BW and the AREMBES - ESA CTP No.4000116655/16/NL/BW. This publication is part of grant RTI2018-096686-B-C21 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. This publication is part of grant RTI2018-096686-B-C21 and PID2020-115325GB-C31 funded by MCIN/AEI/10.13039/501100011033

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Full text link
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer, studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory, a versatile observatory designed to address the Hot and Energetic Universe science theme, selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), it aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over an hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR, browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters. Finally we briefly discuss on the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, and touch on communication and outreach activities, the consortium organisation, and finally on the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. (abridged).Comment: 48 pages, 29 figures, Accepted for publication in Experimental Astronomy with minor editin

    Investigation of Ti/Pd Bilayer for Single Photon Detection

    No full text

    Fabrication and characterization of an MgB2 bolometer

    No full text
    In this work, we present the experimental results obtained in the fabrication and characterization of a superconducting MgB2 bolometer. The device was made from an MgB2 meander-like structure suspended on a 500 nm thick SiN membrane. The MgB2 meander line was 50 μm wide and 7.6 mm long and it was defined by optical lithography and dry etching. The SiN membrane had an area of 1.3 mm× 1.3 mm and it was obtained by a silicon micromachining technique. The electrical and thermal properties of the device were measured at low temperature in a closed-cycle cryocooler. The resulting Tc of the meander was unchanged with respect to the unprocessed film and the transport properties, measured in voltage-biased mode, indicated a value for Jc of the order of 105 A cm−2 at 27 K. The logarithmic sensitivity of the bolometer turned out to be higher than 150. The study of the thermal properties of the bolometer on the membrane showed a thermal conductance of the order 10−5 WK−1 at a working temperature of 32 K. The bolometer, irradiated by a chopped laser beam, showed a cut-off frequency of 94 Hz. The maximum experimental responsivity was estimated to be 2.3 × 103 VW−1

    Analysis of the Current Noise Produced in Stationary Conditions in MgB2 Films at Different Stages of the Superconducting Transition

    No full text
    In previous papers (Mazzetti et al. in Phys. Rev. B 77:064516, 2008; Ponta et al. in Phys. Rev. B 79:134513, 2009) the mechanism of resistive transition of MgB2 films has been investigated by the analysis of the non-stationary noise produced during the transition process. The developed model suggested that when the transition occurs very near to T (C) at low bias current, a mixed state, consisting of normal and superconductive domains, takes place. A different model based on fluxoids dynamics, generated by the current and/or by an external field, is appropriate when the transition occurs at strong bias currents and temperatures much lower than T (C). The purpose of this paper is a further investigation of the transition process at low bias currents by analyzing the 1/f power spectra of the noise, taken in stationary conditions at different values of the specimen resistance. These spectra, when renormalized to represent the relative fluctuation of the specimen resistance, are practically coincident, a fact in agreement with the developed model

    AC/DC characterization of a Ti/Au TES with Au/Bi absorber for x-ray detection

    Get PDF
    Transition-edge sensors (TESs) are used as very sensitive thermometers in microcalorimeters aimed at detection of different wavelengths. In particular, for soft X-ray astrophysics, science goals require very high-resolution microcalorimeters which can be achieved with TESs coupled to suitable absorbers. For many applications, there is also need for a high number of pixels which typically requires multiplexing in the readout stage. Frequency-domain multiplexing (FDM) is a common scheme and is the baseline proposed for the ATHENA mission. FDM requires biasing the TES in AC at MHz frequencies. Recently, there has been reported degradation in performances under AC with respect to DC bias. In order to assess the performances of TESs to be used with FDM, it is thus of great interest to compare the performances of the same device both under AC bias and DC bias. This requires two different measurement set-ups with different processes for making the characterization. We report in this work the preliminary results of a single-pixel characterization performed on a TiAu TES under AC and afterwards under DC bias in different facilities. Extraction of dynamical parameters and noise performances are compared in both cases as a first stage for further AC/DC comparison of these devices.This work is partly funded by European Space Agency (ESA) and coordinated with other European efforts under ESA CTP contract ITT AO/1-7947/14/NL/BW. It has also received funding from the European Union’s Horizon 2020 Programme under the AHEAD (Activities for the High-Energy Astrophysics Domain) project with grant agreement number 654215. CSIC work is financed by the Spanish Ministerio de Ciencia, Innovación y Universidades-MICINN (projects ESP2016-76683-C3-2-R and RTI2018-096686-B-C22). Personnel from ICMAB acknowledge financial support from MINECO, through the “Severo Ochoa” Programme for Centres of Excellence in R&D (SEV-2015-0496).Peer reviewe
    corecore