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Abstract: Transition-edge sensors (TESs) are single photon detectors attractive for applications in
quantum optics and quantum information experiments owing to their photon number resolving
capability. Nowadays, high-energy resolution TESs for telecommunication are based on either W or
Au/Ti films, demonstrating slow recovery time constants. We report our progress on the development
of an Al/Ti TES. Since bulk aluminum has a critical temperature (Tc) of ca. 1.2 K and a sufficiently
low specific heat (less than 10´4 J/cm3K2), it can be employed to produce the sensitive material
for optical TESs. Furthermore, exploiting its high Tc, Al-based TESs can be trimmed in a wider
temperature range with respect to Ti or W. A first Al/Ti TES with a Tc « 142 mK, investigated from
a thermal and optical point of view, has shown a response time constant of about 2 µs and single
photon discrimination with 0.34 eV energy resolution at telecom wavelength, demonstrating that
Al/Ti films are suitable to produce TESs for visible and NIR photon counting.
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1. Introduction

A transition-edge sensor is a superconducting phase thermometer, able to detect the number
of incident photons through its intrinsic energy resolution capability. The core of a TES is the
superconducting thin film: it is biased in its transition region, and, in this way, the film works
as a sensitive thermometer measuring the temperature change due to the photon absorption.

Presently, TESs are employed as microcalorimeters and bolometers to detect radiation in a
wide spectral region, from millimeter waves to gamma rays. So far, TESs for IR-visible range have
been fabricated using different superconducting materials: single layer-based TESs use tungsten [1],
hafnium [2], or titanium [3], whereas bilayer-based TESs use titanium proximized by gold [4],
palladium [5], or molybdenum proximized by gold [6].

In superconducting and normal metal bilayer thin films, the critical temperature can be
theoretically trimmed from 0 to the Tc of the bulk superconductor by changing the layer thickness
ratio [7]. In this way, it is possible to control the most important characteristics of a TES detector [8]
that depend on temperature: heat capacity, response time constant, and energy resolution.

The aluminum critical temperature is the highest among tungsten, hafnium, molybdenum,
and titanium, so its use as superconducting material, with titanium as a normal material, allows
for the tuning of the Tc in a wide temperature range, from a few tens of mK up to 1.2 K, selecting the
appropriate values of layer thicknesses.

TESs based on an Al/Ti bilayer have already been used as bolometers for astrophysical applications
at far-infrared and millimeter wavelengths [9,10]. Recently, also in the optical range, a characterization of a
suspended TES bolometer has been published [11]. However, in this case, the high level of noise did not
allow for the discrimination of single photons at telecommunication wavelengths.
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The microcalorimeter prototype here presented has been developed to demonstrate the
photon-number resolving (PNR) capability of TES devices based on Al proximized by Ti, in the
optical and NIR spectral range. This work reports thermal and optical properties, compared with
simulation data, of an Al/Ti TES working above 140 mK, with an active area of 100 µm2 and Nb
wirings. With this low Tc and wide active area, this prototype has demonstrated to be a photon number
resolved up to eight photon states at 1545 nm. Al/Ti TESs could be utilized to cover specific needs,
such as lower response time constants and higher saturation energy.

2. Materials and Methods

The characteristics of superconducting thin films, which serve as sensitive material, are very
important for TES microcalorimeters. The main parameters are the critical temperature Tc and the
transition width ∆Tc between the superconducting and the normal phase. Since Tc and ∆Tc depend
both on the quality of each layer and the interface transparency between the layers, an excellent
control of the deposition process is essential to fabricate TESs with good performances. Therefore,
the bilayer films of aluminum and titanium have been produced with different thicknesses of Ti and
Al, following procedures similar to one described in [12]: high vacuum deposition with an e-gun
(base pressure < 10´5 Pa) and a lift-off of Al/Ti to define active areas ranging between 100 µm2

and 400 µm2.
Superconducting wirings are defined by an RF sputtering deposition of 40 nm of Nb, followed by

optical lithography. Before the Nb deposition, the Ti film surface was sputter-cleaned to reduce the
contact resistance between Nb and Ti. Wirings with a higher Tc limit the outdiffusion of hot electrons
from Al/Ti into electrodes because of Andreev reflection [13]. Figure 1 shows the critical temperatures
of four TES prototypes with areas of 10 µm ˆ 10 µm, measured by the 4-wires technique. The samples
have an Al layer of 40 nm, while the Ti thickness ranges from 5 to 15 nm.
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Figure 1. Critical temperatures of different Al/Ti transition-edge sensors (TESs) ranging between
0.14 K and 1 K.

3. Results

The device with a critical temperature of 0.142 K (in Figure 1) has an active area of 10 µm ˆ 10 µm
and a thickness of 55 nm (15 nm of Ti and 40 nm of Al). The device was put in a standard voltage-biased
circuit and linked to a dc-SQUID to read out the device current [14] (Figure 2). The circuit was cooled
down through a dilution refrigerator with a base temperature of 35 mK.
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Figure 2. Scheme of the electronic bias circuit with the TES, the shunt resistance (Rsh), the parasitic 
resistance (Rp), and the read-out line exploiting an array of dc-SQUID as current amplifier. 

Figure 3a shows the experimental values of the currents through the device (Ites) as a function of 
the bias currents (Ibias), for the bath temperature range 105 mK ≤ Tb ≤ 135 mK (dots). The detector 
working point is typically tuned along these curves with the aim to optimize some detector features 
for specific experimental applications. In the case of this work, the aim is to demonstrate the PNR 
capability of the Al/Ti TES, so the working point has been experimentally selected to obtain the best 
energy resolution. 

(a)

(b)

Figure 3. TES bias curve at different bath temperatures. (a) Dots are experimental data of Ites vs. Ibias; 
lines are the values at the working point R0 and parasitic resistance Rp. (b) Ites vs. Ibias experimental 
data and fit at 108 mK; the inset shows a comparison between the R(T,	ܫtes) curve calculated by 
Equation (2) and the corresponding one of Figure 1. 

Figure 2. Scheme of the electronic bias circuit with the TES, the shunt resistance (Rsh), the parasitic
resistance (Rp), and the read-out line exploiting an array of dc-SQUID as current amplifier.

Figure 3a shows the experimental values of the currents through the device (Ites) as a function of
the bias currents (Ibias), for the bath temperature range 105 mK ď Tb ď 135 mK (dots). The detector
working point is typically tuned along these curves with the aim to optimize some detector features
for specific experimental applications. In the case of this work, the aim is to demonstrate the PNR
capability of the Al/Ti TES, so the working point has been experimentally selected to obtain the best
energy resolution.
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Figure 3. TES bias curve at different bath temperatures. (a) Dots are experimental data of Ites vs. Ibias;
lines are the values at the working point R0 and parasitic resistance Rp. (b) Ites vs. Ibias experimental
data and fit at 108 mK; the inset shows a comparison between the R(T, Ites) curve calculated by
Equation (2) and the corresponding one of Figure 1.
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For each curve of Figure 3a (Ites vs. Ibias), the dissipated power (P) is calculated at the
corresponding resistance of the working point R0 = 20 mΩ (4% of its normal resistance, Rn « 0.5 Ω).
By fitting the experimental data, with the relation P = k(Tc

n ´ Tb
n), it is found that n « 5, as expected

for electron-phonon conduction in metals with small volume and high power densities [13], and from
k the thermal conductance G = nkTc

n´1, is calculated approximately 0.1 nW/K.
The fits of the bias curve (continuous line in Figure 3b) is obtained imposing the equilibrium state

at the heat balance equations [4]:

#

pIbias – ItesqRsh ´ Ites
`

Rp ` R pT, Itesq
˘

“ 0
R pT, Itesq I2

tes ´ k
`

Tn ´ Tn
b

˘

“ 0
(1)

where Rsh is the shunt resistance, Rp is the parasitic resistance, and using a hyperbolic tangent function
of current and temperature to represent R(T, Ites) [4]:

R pT, Itesq “
Rn

2

„

1` tanh
ˆ

T´ Tc ` ξ Ites

D

˙

(2)

where ξ takes into account the current dependence of the resistance, and D models the transition width.
The fit procedure is obtained minimizing the chi-square test between the expected and simulated Ites

vs. Ibias curves.
At Tb = 108 mK, with n = 5 and with Rsh = 22 mΩ, (Figure 3b) the best fit produces, for the free

parameters, the following results: Rp = 5 mΩ; ξ = 2.5 K/A; D = 7.9 mK; and, finally, k = 47 nW/K5.
This latter value is in agreement with results from the dissipated power method and confirms the
goodness of fit procedure. The inset of Figure 3b compares the R(T, Ites) behavior obtained from the
four-wire technique measurement with Equation (2). The mismatch at the top of the transition is due
to the proximity effect, which is not taken into account in the model of Equation (2).

Figure 4 (dots) shows device impedance (Z) measurements [15] as a function of frequency
performed at the same working point of I0 = 19 µA, which corresponds to bias the device at R0 = 4% Rn.
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Figure 4. Measured (dots) device impedance Z at R0 bias point and the corresponding fit (line) between
2 kHz and 500 kHz of frequencies.

In the frequency domain of 2 kHz ˜ 500 kHz, the fit of the experimental data (red line in
Figure 4) [15] provides the following devices parameters that cannot be directly measured. The fit
procedure has been applied simultaneously on the frequency behavior of the real and imaginary part
of the impedance measurement, minimizing the chi-square test.
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The logarithmic derivative of the TES resistance with respect to temperature at constant current
α = (T0/R0)(BR/BT)|I = 10, the current sensitivity β = (I0/R0)(BR/BI)|T = 15, and the electronic heat
capacity Ce = 0.32 fJ/K. This latter value is compatible with the value estimated by considering
literature data [16] and the volume of deposited Al and Ti, ca. 0.72 fJ/K.

Two of the main characteristics of single photon detectors are the energy resolution, i.e., how well
it discriminates a photon, and the response time constant. The device intrinsic energy resolution is [17]

∆EFWHM “ 2
a

2lnp2q ¨

g

f

f

f

e4kbTc
2 Ce

α

g

f

f

ep1` rq
n
ϕ

˜

1
2

˜

1`
Tb

2

Tc
2

¸

`
n
α2ϕ

`

1` ra2
˘

¸

(3)

where φ = 1 ´ (Tb/Tc)n, r = RshTb/(R0Tc), and a = (1 + αϕ/n). Meanwhile, the theoretical response
time constant is [17]

τ “
Ce

G

"

1`
α

n

„

1´
ˆ

Tb
Tc

˙n*´1

(4)

By substituting in Equations (3) and (4), the values obtained by the fits of the bias curve and
impedance measurement, ∆EFWHM, results in 0.17 eV and τ = 1.3 µs.

The aim of this work is to demonstrate the PNR capacity of an Al/Ti TES, so this device was
stabilized in a thermal bath of 108 mK and tested for single photon detection at telecommunication
wavelengths. To irradiate the TES, a single-mode optical fiber was aligned at room temperature over
the active area [14]. The photon source was a 5 kHz repetition rate pulsed laser, with a pulse width
of 35 ps, at 1545 nm. Figure 5 shows the histogram of the photon discrimination: it is possible to
distinguish up to eight Gaussian peaks representing the corresponding photon states.
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Figure 5. Eight photon states are distinguishable at 1545 nm with an energy resolution of 0.34 eV.
The inset shows the single and the four photons averaged pulses; by the pulse fit the response time
constant is 2.31 µs.

By the histogram of Figure 5, the energy resolution has been calculated considering the full width
at half maximum of the first photon state peak [4]: ∆EFWHM = 0.34 eV. The worsening with respect to
theoretical value is probably due to a lack of full overlap of the optical fiber tip onto the device active
area, which causes photons to be deposited on the edge of the detector, absorbed by Nb wirings or by
the substrate near the TES [4].
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The inset of Figure 5 shows the single photon averaged pulse (dots). The fit obtained by a double
exponential equation [18] provides the response time constant of τ = 2.31 µs, close to the value obtained
by the theoretical estimation. The areas under the averaged photon pulses represent the collected
energy, Ecol. These values are compared with the incident photon energy (0.8 eV), finding an overall
collection efficiency of ε « 0.4. This number is far from those of Ti/Au TES, ε « 0.9 [19], and Ti/Pd
TES, ε « 0.7 [20], but close to that reported for W TES [21]. The different thicknesses of TESs and the
diffusivity of Al compared with Au and Pd could explain the energy loss outside the active areas.

4. Conclusions

An Al/Ti bilayer, compared with that of Ti/Au and Ti/Pd, is a valid alternative solution for
producing TESs able to detect telecom photons down to the single photon regime, with potential
applications beyond astrophysics at far-infrared and millimeter wavelengths.

Due to the low Tc with respect to pure aluminum, the Al/Ti TES presented here has a response
time constant of the order of microseconds, with an energy resolution of 0.34 eV, and discriminates
up to eight photon states. Al/Ti bilayers are promising because, by reducing the device active area at
1 µm2 and raising the working temperature up to 700 mK, the response time constant should reduce
to only hundreds of nanoseconds without worsening the energy resolution. This possibility to trim
the Tc over a wide temperature range could be very useful for tailoring TES detectors for specific
detection experiments.
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