62 research outputs found

    The Asymmetric Wind in M82

    Get PDF
    We have obtained detailed imaging Fabry-Perot observations of the nearby galaxy M82, in order to understand the physical association between the high-velocity outflow and the starburst nucleus. The observed velocities of the emitting gas in M82 reveal a bipolar outflow of material, originating from the bright starburst regions in the galaxy's inner disk, but misaligned with respect to the galaxy spin axis. The deprojected outflow velocity increases with radius from 525 to 655 km/s. Spectral lines show double components in the centers of the outflowing lobes, with the H-alpha line split by ~300 km/s over a region almost a kiloparsec in size. The filaments are not simple surfaces of revolution, nor is the emission distributed evenly over the surfaces. We model these lobes as a composite of cylindrical and conical structures, collimated in the inner ~500 pc but expanding at a larger opening angle of ~25 degrees beyond that radius. We compare our kinematic model with simulations of starburst-driven winds in which disk material surrounding the source is entrained by the wind. The data also reveal a remarkably low [NII]/H-alpha ratio in the region of the outflow, indicating that photoionization by the nuclear starburst may play a significant role in the excitation of the optical filament gas, particularly near the nucleus.Comment: 42 pages AASTeX with 16 figures; accepted for publication in ApJ; figures reformatted for better printin

    The Circumstellar Disk of the Butterfly Star in Taurus

    Full text link
    We present a model of the circumstellar environment of the so-called ``Butterfly Star'' in Taurus (IRAS 04302+2247). The appearance of this young stellar object is dominated by a large circumstellar disk seen edge-on and the light scattering lobes above the disk. The model is based on multi-wavelength continuum observations: Millimeter maps and high-resolution near-infrared images obtained with HST/NICMOS. It was found that the disk and envelope parameters are comparable with those of the circumstellar environment of other young stellar objects. A main result is that the dust properties must be different in the circumstellar disk and in the envelope: While a grain size distribution with grain radii up to 100 micron is required to reproduce the millimeter observations of the disk, the envelope is dominated by smaller grains similar to those of the interstellar medium. Preprint with high figure quality available at: http://spider.ipac.caltech.edu/staff/swolf/homepage/public/preprints/i04302.psComment: 32 pages, 9 figure

    The Star Formation History of the Disk of the Starburst galaxy M82

    Get PDF
    Spectroscopic, photometric and dynamical data of the inner 3 kpc part of the starburst galaxy M82 are analyzed in order to investigate the star formation history of the stellar disk. The long-slit spectra along the major axis are dominated by Balmer absorption lines in the region outside the nuclear starburst all the way up to ~3.5 scalelengths (mu_B=22 mag/arcsec**2). Single Stellar Population (SSP) spectra of age 0.4-1.0 Gyr match well the observed spectra in the 1-3 kpc zone, with a mean age of the stellar population marginally higher in the outer parts. The mass in these populations, along with that in the gas component, make up for the inferred dynamical mass in the same annular zone for a Kroupa initial mass function, with a low mass cut-off m_l=0.4 Msun. The observed ratio of the abundances of alpha elements with respect to Fe, is also consistent with the idea that almost all the stars in M82 disk formed in a burst of short duration (0.3 Gyr) around 0.8 Gyr ago. We find that the optical/near infrared colors and their gradients in the disk are determined by the reddening with visual extinction exceeding 1 mag even in the outer parts of the disk, where there is apparently no current star formation. The disk-wide starburst activity was most likely triggered by the interaction of M82 with its massive neighbor M81 around 1~Gyr ago. The properties of the disk of M82 very much resemble the properties of the disks of luminous compact blue galaxies seen at 0.2-1.0 redshift.Comment: 7 pages, Accepted for publication in Ap

    Milestones in the Observations of Cosmic Magnetic Fields

    Get PDF
    Magnetic fields are observed everywhere in the universe. In this review, we concentrate on the observational aspects of the magnetic fields of Galactic and extragalactic objects. Readers can follow the milestones in the observations of cosmic magnetic fields obtained from the most important tracers of magnetic fields, namely, the star-light polarization, the Zeeman effect, the rotation measures (RMs, hereafter) of extragalactic radio sources, the pulsar RMs, radio polarization observations, as well as the newly implemented sub-mm and mm polarization capabilities. (Another long paragraph is omitted due to the limited space here)Comment: Invited Review (ChJA&A); 32 pages. Sorry if your significant contributions in this area were not mentioned. Published pdf & ps files (with high quality figures) now availble at http://www.chjaa.org/2002_2_4.ht

    Bispectrum speckle interferometry of the B[e] star MWC 349A

    Full text link
    We present the results of bispectrum speckle interferometry of the B[e] star MWC 349A obtained with the SAO 6m telescope. Our diffraction-limited J-, H-, and K-band images (resolutions 43--74 mas) suggest the star is surrounded by a circumstellar disk seen almost edge-on. The observed visibility shape is consistent with a two-component elliptical disk model, probably corresponding to the gaseous and dusty components of the disk. We show that the classification of the object as a pre-main-sequence star or a young planetary nebula is problematic. An analysis of the uncertainties in the basic parameter determination lead us to the conclusion that MWC 349A is probably either a B[e] supergiant or a binary system, in which the B[e]-companion dominates the observed properties.Comment: 8 pages, 16 figures, accepted for publication in A&

    Narrow and variable lines in the ultraviolet spectrum of the Seyfert galaxy NGC4151

    No full text
    The Seyfert galaxy NGC4151 observed when the nucleus is at a minimum has two emission lines of full width at half maximum less than 7 and 16 A, respectively, and varying in intensity by a factor of three in 10 days. These lines are too narrow to be emitted by the whole broad-line region and must arise instead from two localized regions which have a special excitation mechanism, possibly a two-sided jet
    • 

    corecore