62 research outputs found
Everywhere regularity for vectorial functionals with general growth
We prove Lipschitz continuity for local
minimizers of integral functionals of the Calculus of Variations
in the vectorial case, where the energy density depends explicitly
on the space variables and has general growth with respect to the
gradient. One of the models is
with h a convex function with general growth (also exponential behaviour
is allowed)
Existence of weak solutions for elliptic systems with p,q-growth
We consider a non-linear system of m equations in divergence form and a boundary condition: {Sigma(n)(i=1) partial derivative/partial derivative x(i) (A(i)(alpha)(x, Du(x))) = 0, 1 <= alpha <= m, in Omega u = (u) over tilde on partial derivative Omega. The functions A(i)(alpha)(x, z) are Holder continuous with respect to x and vertical bar z vertical bar(p) - c(1) <= Sigma(m)(alpha=1) Sigma(n)(i=1) A(i)(alpha)(x, z)z(i)(alpha) <= c(2)(1 + vertical bar z vertical bar)(q), 2 <= p <= q. We prove the existence of a weak solution u in ((u) over tilde + W-0(1,p)(Omega; R-m)) boolean AND W-loc(1,q)(Omega; R-m), provided p and q are close enough and under suitable sununability assumptions on the boundary datum (u) over tilde
LIPSCHITZ CONTINUITY FOR ENERGY INTEGRALS WITH VARIABLE EXPONENTS
A regularity result for integrals of the Calculus of Variations with variable exponents is presented. Precisely, we prove that any vector-valued minimizer of an energy integral over an open set WHRn, with variable exponent p(x) in the Sobolev class W1; r loc W for some r > n, is locally Lipschitz continuous in W and an a priori estimate holds
Local boundedness of vectorial minimizers of non-convex functionals
We prove a local boundedness result for local minimizers of a class of non-convex functionals, under special structure assumptions on the energy density. The proof follows the lines of that in [CupLeoMas17], where a similar result is proved under slightly stronger assumptions on the energy density
Limitatezza locale di minimi vettoriali di funzionali non convessi
We prove a local boundedness result for local minimizers of a class of non-convex functionals, under special structure assumptions on the energy density. The proof follows the lines of that in [CupLeoMas17], where a similar result is proved under slightly stronger assumptions on the energy density.Dimostriamo un risultato di limitatezza locale per minimi locali di una classe di funzionali non convessi, con particolari ipotesi di struttura sulla densità di energia. La dimostrazione procede come quella in [CupLeoMas17], dove un risultato simile è dimostrato con ipotesi leggermente più forti sulla densità di energia
Інституціональні можливості трудового потенціалу в контексті державного управління інституційними змінами
Обґрунтовано можливість використання механізму трудового потенціалу як складової інституціональних змін системи трудових можливостей для інституційного розвитку. Викладено теоретико-методологічні узагальнення щодо місця інституту держави в межах інституціональних перетворень, а також її ролі у формуванні інституціонального середовища для розвитку трудових можливостей суспільства.In this article there's grounded the possibility of using the mechanism of labor potential, as part of institutional change of employment opportunities for development. In addition, the article provides theoretical and methodological generalizations about a place within the institution of state of institutional changes and its role in shaping the institutional environment for the development of labour opportunities of society. The result of the findings of the paper is to state administration of labor potential
- …