669 research outputs found

    Magnetism of Covalently Functionalized Carbon Nanotubes

    Get PDF
    We investigate the electronic structure of carbon nanotubes functionalized by adsorbates anchored with single C-C covalent bonds. We find that, despite the particular adsorbate, a spin moment with a universal value of 1.0 μB\mu_B per molecule is induced at low coverage. Therefore, we propose a mechanism of bonding-induced magnetism at the carbon surface. The adsorption of a single molecule creates a dispersionless defect state at the Fermi energy, which is mainly localized in the carbon wall and presents a small contribution from the adsorbate. This universal spin moment is fairly independent of the coverage as long as all the molecules occupy the same graphenic sublattice. The magnetic coupling between adsorbates is also studied and reveals a key dependence on the graphenic sublattice adsorption site.Comment: final version, improved discussion about calculations and defect concentratio

    Ultrafast laser-driven topological spin textures on a 2D magnet

    Get PDF

    Relativistic domain-wall dynamics in van der Waals antiferromagnet MnPS3

    Get PDF
    The discovery of two-dimensional (2D) magnetic van der Waals (vdW) materials has flourished an endeavor for fundamental problems as well as potential applications in computing, sensing and storage technologies. Of particular interest are antiferromagnets, which due to their intrinsic exchange coupling show several advantages in relation to ferromagnets such as robustness against external magnetic perturbations. Here we show that, despite of this cornerstone, the magnetic domains of recently discovered 2D vdW MnPS3 antiferromagnet can be controlled via magnetic fields and electric currents. We achieve ultrafast domain-wall dynamics with velocities up to ~3000 m s−1 within a relativistic kinematic. Lorentz contraction and emission of spin-waves in the terahertz gap are observed with dependence on the edge termination of the layers. Our results indicate that the implementation of 2D antiferromagnets in real applications can be further controlled through edge engineering which sets functional characteristics for ultrathin device platforms with relativistic features

    Properties and dynamics of meron topological spin textures in the two-dimensional magnet CrCl3

    Get PDF
    Merons are nontrivial topological spin textures highly relevant for many phenomena in solid state physics. Despite their importance, direct observation of such vortex quasiparticles is scarce and has been limited to a few complex materials. Here we show the emergence of merons and antimerons in recently discovered two-dimensional (2D) CrCl3 at zero magnetic field. We show their entire evolution from pair creation, their diffusion over metastable domain walls, and collision leading to large magnetic monodomains. Both quasiparticles are stabilized spontaneously during cooling at regions where in-plane magnetic frustration takes place. Their dynamics is determined by the interplay between the strong in-plane dipolar interactions and the weak out-of-plane magnetic anisotropy stabilising a vortex core within a radius of 8-10 nm. Our results push the boundary to what is currently known about non-trivial spin structures in 2D magnets and open exciting opportunities to control magnetic domains via topological quasiparticles.Comment: Nature Communications 12, 185 (2021). Editors' Highlights sectio

    All-optical control of spin in a 2D van der Waals magnet

    Get PDF
    Two-dimensional (2D) van der Waals magnets provide new opportunities for control of magnetism at the nanometre scale via mechanisms such as strain, voltage and the photovoltaic effect. Ultrafast laser pulses promise the fastest and most energy efficient means of manipulating electron spin and can be utilized for information storage. However, little is known about how laser pulses influence the spins in 2D magnets. Here we demonstrate laser-induced magnetic domain formation and all-optical switching in the recently discovered 2D van der Waals ferromagnet CrI(3). While the magnetism of bare CrI(3) layers can be manipulated with single laser pulses through thermal demagnetization processes, all-optical switching is achieved in nanostructures that combine ultrathin CrI(3) with a monolayer of WSe(2). The out-of-plane magnetization is switched with multiple femtosecond pulses of either circular or linear polarization, while single pulses result in less reproducible and partial switching. Our results imply that spin-dependent interfacial charge transfer between the WSe(2) and CrI(3) is the underpinning mechanism for the switching, paving the way towards ultrafast optical control of 2D van der Waals magnets for future photomagnetic recording and device technology

    Universal Magnetic Properties of sp3^3-type Defects in Covalently Functionalized Graphene

    Get PDF
    Using density-functional calculations, we study the effect of sp3^3-type defects created by different covalent functionalizations on the electronic and magnetic properties of graphene. We find that the induced magnetic properties are {\it universal}, in the sense that they are largely independent on the particular adsorbates considered. When a weakly-polar single covalent bond is established with the layer, a local spin-moment of 1.0 μB\mu_B always appears in graphene. This effect is similar to that of H adsorption, which saturates one pzp_z orbital in the carbon layer. The magnetic couplings between the adsorbates show a strong dependence on the graphene sublattice of chemisorption. Molecules adsorbed at the same sublattice couple ferromagnetically, with an exchange interaction that decays very slowly with distance, while no magnetism is found for adsorbates at opposite sublattices. Similar magnetic properties are obtained if several pzp_z orbitals are saturated simultaneously by the adsorption of a large molecule. These results might open new routes to engineer the magnetic properties of graphene derivatives by chemical means

    Scalable photonic sources using two-dimensional lead halide perovskite superlattices

    Get PDF
    Miniaturized photonic sources based on semiconducting two-dimensional (2D) materials offer new technological opportunities beyond the modern III-V platforms. For example, the quantum-confined 2D electronic structure aligns the exciton transition dipole moment parallel to the surface plane, thereby outcoupling more light to air which gives rise to high-efficiency quantum optics and electroluminescent devices. It requires scalable materials and processes to create the decoupled multi-quantum-well superlattices, in which individual 2D material layers are isolated by atomically thin quantum barriers. Here, we report decoupled multi-quantum-well superlattices comprised of the colloidal quantum wells of lead halide perovskites, with unprecedentedly ultrathin quantum barriers that screen interlayer interactions within the range of 6.5 Å. Crystallographic and 2D k-space spectroscopic analysis reveals that the transition dipole moment orientation of bright excitons in the superlattices is predominantly in-plane and independent of stacking layer and quantum barrier thickness, confirming interlayer decoupling

    Transient magneto-optical spectrum of photoexcited electrons in the van der Waals ferromagnet Cr2Ge2Te6

    Get PDF
    Femtosecond optical control of magnetic materials shows promise for future ultrafast data storage devices. To date, most studies in this area have relied on quasimonochromatic light in magneto-optical pump-probe experiments, which limited their ability to probe semiconducting and molecule-based materials with structured optical spectra. Here, we demonstrate the possibility of extracting the magneto-optical spectrum of the electrons in the conduction band in the two-dimensional van der Waals ferromagnet Cr2Ge2Te6 (CGT), which is made possible due to broadband probing in the visible spectrum. The magneto-optical signal is a sum of contributions from electrons in the conduction and valence bands, which are of opposite sign for CGT. Depending on the probe wavelength used, this difference could lead to an erroneous interpretation that the magnetization direction is reversed after excitation, which has important consequences for understanding spin toggle switching phenomena

    Breaking through the Mermin-Wagner limit in 2D van der Waals magnets

    Get PDF
    The Mermin-Wagner theorem states that long-range magnetic order does not exist in one- or two-dimensional (2D) isotropic magnets with short-ranged interactions. The theorem has been a milestone in magnetism and has been driving the research of recently discovered 2D van der Waals (vdW) magnetic materials from fundamentals up to potential applications. In such systems, the existence of magnetic ordering is typically attributed to the presence of a significant magnetic anisotropy, which is known to introduce a spin-wave gap and circumvent the core assumption of the theorem. Here we show that in finite-size 2D vdW magnets typically found in lab setups (e.g., within millimetres), short-range interactions can be large enough to allow the stabilisation of magnetic order at finite temperatures without any magnetic anisotropy for practical implementations. We demonstrate that magnetic ordering can be created in flakes of 2D materials independent of the lattice symmetry due to the intrinsic nature of the spin exchange interactions and finite-size effects in two-dimensions. Surprisingly we find that the crossover temperature, where the intrinsic magnetisation changes from superparamagnetic to a completely disordered paramagnetic regime, is weakly dependent on the system length, requiring giant sizes (e.g., of the order of the observable universe ~1026^{26} m) in order to observe the vanishing of the magnetic order at cryogenic temperatures as expected from the Mermin-Wagner theorem. Our findings indicate exchange interactions as the main driving force behind the stabilisation of short-range order in 2D magnetism and broaden the horizons of possibilities for exploration of compounds with low anisotropy at an atomically thin level
    corecore