125 research outputs found

    Harmonics Reduction Techniques in Renewable Energy Interfacing Converters

    Get PDF
    Non

    Low power wind energy conversion system based on variable speed permanent magnet synchronous generators

    Full text link
    This paper presents a low power wind energy conversion system (WECS) based on a permanent magnet synchronous generator and a high power factor (PF) rectifier. To achieve a high PF at the generator side, a power processing scheme based on a diode rectifier and a boost DC-DC converter working in discontinuous conduction mode is proposed. The proposed generator control structure is based on three cascaded control loops that regulate the generator current, the turbine speed and the amount of power that is extracted from the wind, respectively, following the turbine aerodynamics and the actual wind speed. The analysis and design of both the current and the speed loops have been carried out taking into consideration the electrical and mechanical characteristics of the WECS, as well as the turbine aerodynamics. The power loop is not a linear one, but a maximum power point tracking algorithm, based on the Perturb and Observe technique, from which is obtained the reference signal for the speed loop. Finally, to avoid the need of mechanical sensors, a linear Kalman Filter has been chosen to estimate the generator speed. Simulation and experimental results on a 2-kW prototype are shown to validate the concept. © 2013 John Wiley & Sons, Ltd.Carranza Castillo, O.; Garcerá Sanfeliú, G.; Figueres Amorós, E.; González Morales, LG. (2014). Low power wind energy conversion system based on variable speed permanent magnet synchronous generators. Wind Energy. 17(6):811-827. doi:10.1002/we.1598S811827176Ackermann, T. (Ed.). (2005). Wind Power in Power Systems. doi:10.1002/0470012684Muyeen, S. M., Shishido, S., Ali, M. H., Takahashi, R., Murata, T., & Tamura, J. (2008). Application of energy capacitor system to wind power generation. Wind Energy, 11(4), 335-350. doi:10.1002/we.265Ladenburg, J. (2009). Stated public preferences for on-land and offshore wind power generation-a review. Wind Energy, 12(2), 171-181. doi:10.1002/we.308Maeda, T., & Kamada, Y. (2009). A review of wind energy activities in Japan. Wind Energy, 12(7), 621-639. doi:10.1002/we.313Baroudi, J. A., Dinavahi, V., & Knight, A. M. (2007). A review of power converter topologies for wind generators. Renewable Energy, 32(14), 2369-2385. doi:10.1016/j.renene.2006.12.002Di Gerlando, A., Foglia, G., Iacchetti, M. F., & Perini, R. (2012). Analysis and Test of Diode Rectifier Solutions in Grid-Connected Wind Energy Conversion Systems Employing Modular Permanent-Magnet Synchronous Generators. IEEE Transactions on Industrial Electronics, 59(5), 2135-2146. doi:10.1109/tie.2011.2157295Yungtaek Jang, & Jovanovic, M. M. (2000). A new input-voltage feedforward harmonic-injection technique with nonlinear gain control for single-switch, three-phase, DCM boost rectifiers. IEEE Transactions on Power Electronics, 15(2), 268-277. doi:10.1109/63.838099Athab, H. S., Lu, D. D.-C., & Ramar, K. (2012). A Single-Switch AC/DC Flyback Converter Using a CCM/DCM Quasi-Active Power Factor Correction Front-End. IEEE Transactions on Industrial Electronics, 59(3), 1517-1526. doi:10.1109/tie.2011.2158771Barbosa, P., Canales, F., Crebier, J.-C., & Lee, F. C. (2001). Interleaved three-phase boost rectifiers operated in the discontinuous conduction mode: analysis, design considerations and experimentation. IEEE Transactions on Power Electronics, 16(5), 724-734. doi:10.1109/63.949505Yao, K., Ruan, X., Mao, X., & Ye, Z. (2011). Variable-Duty-Cycle Control to Achieve High Input Power Factor for DCM Boost PFC Converter. IEEE Transactions on Industrial Electronics, 58(5), 1856-1865. doi:10.1109/tie.2010.2052538Andriollo, M., De Bortoli, M., Martinelli, G., Morini, A., & Tortella, A. (2009). Control strategy of a wind turbine drive by an integrated model. Wind Energy, 12(1), 33-49. doi:10.1002/we.281Hansen, A. D., & Michalke, G. (2008). Modelling and control of variable-speed multi-pole permanent magnet synchronous generator wind turbine. Wind Energy, 11(5), 537-554. doi:10.1002/we.278Salvatore, N., Caponio, A., Neri, F., Stasi, S., & Cascella, G. L. (2010). Optimization of Delayed-State Kalman-Filter-Based Algorithm via Differential Evolution for Sensorless Control of Induction Motors. IEEE Transactions on Industrial Electronics, 57(1), 385-394. doi:10.1109/tie.2009.2033489Kazmi, S. M. R., Goto, H., Guo, H.-J., & Ichinokura, O. (2011). A Novel Algorithm for Fast and Efficient Speed-Sensorless Maximum Power Point Tracking in Wind Energy Conversion Systems. IEEE Transactions on Industrial Electronics, 58(1), 29-36. doi:10.1109/tie.2010.2044732Pucci, M., & Cirrincione, M. (2011). Neural MPPT Control of Wind Generators With Induction Machines Without Speed Sensors. IEEE Transactions on Industrial Electronics, 58(1), 37-47. doi:10.1109/tie.2010.2043043Ming Y Li G Ming Z Chengyong Z Modeling of the wind turbine with a permanent magnet synchronous generator for integration IEEE Power Engineering Society General Meeting, 2007 2007 1 6Carranza O Figueres E Garcera G Gonzalez LG Gonzalez-Espin F Peak current mode control of a boost rectifier with low distortion of the input current for wind power systems based on permanent magnet synchronous generators 13th European Conference on Power Electronics and Applications, EPE ’09 2009 1 10Eltamaly, A. M. (2007). Harmonics reduction of three-phase boost rectifier by modulating duty ratio. Electric Power Systems Research, 77(10), 1425-1431. doi:10.1016/j.epsr.2006.10.012Vorperian, V. (1990). Simplified analysis of PWM converters using model of PWM switch. Continuous conduction mode. IEEE Transactions on Aerospace and Electronic Systems, 26(3), 490-496. doi:10.1109/7.106126Ridley, R. B. (1991). A new, continuous-time model for current-mode control (power convertors). IEEE Transactions on Power Electronics, 6(2), 271-280. doi:10.1109/63.76813Carranza O Figueres E Garcera G Trujillo CL Velasco D Comparison of speed estimators applied to wind generation systems with noisy measurement signals ISIE 2010 IEEE International Symposium on Industrial 2010 3317 3322Yaoqin J Zhongqing Y Binggang C A new maximum power point tracking control scheme for wind generation International Conference on Power System Technology, PowerCon 2002 IEEE-PES/CSEE 2002 144 148PSIM 7.0 User's Guide (2006), Powersim Inc. 2006Carranza, O., Garcerá, G., Figueres, E., & González, L. G. (2010). Peak current mode control of three-phase boost rectifiers in discontinuous conduction mode for small wind power generators. Applied Energy, 87(8), 2728-2736. doi:10.1016/j.apenergy.2010.02.01

    Hybrid PSO-FLC for dynamic global peak extraction of the partially shaded photovoltaic system

    Get PDF
    Particle Swarm Optimization (PSO) is widely used in maximum power point tracking (MPPT) of photovoltaic (PV) energy systems. Nevertheless, this technique suffers from two main problems in the case of partial shading conditions (PSCs). The first problem is that PSO is a time invariant optimization technique that cannot follow the dynamic global peak (GP) under time variant shading patterns (SPs) and sticks to the first GP that occurs at the beginning. This problem can be solved by dispersing the PSO particles using two new techniques introduced in this paper. The two new proposed PSO re-initialization techniques are to disperse the particles upon the SP changes and the other one is upon a predefined time (PDT). The second problem is regarding the high oscillations around steady state, which can be solved by using fuzzy logic controller (FLC) to fine-tune the output power and voltage from the PV system. The new contribution of this paper is the hybrid PSO-FLC with two PSO particles dispersing techniques that is able to solve the two previous mentioned problems effectively and improve the performance of the PV system in both normal and PSCs. A detailed list of comparisons between hybrid PSO-FLC and original PSO using the two proposed methodologies are achieved. The results prove the superior performance of hybrid PSO-FLC compared to PSO in terms of efficiency, accuracy, oscillations reduction around steady state and soft tuning of the GP tracked

    Modeling and control of single-stage quadratic-boost split source inverters

    Get PDF
    This paper aims to develop the recently introduced Spilt-Source Inverter (SSI) topology to improve its boosting characteristics. New SSI topologies with high voltage gain are introduced in this paper. The proposed converters square the basic SSI’s boosting factor by utilizing an additional inductor, capacitor, and two diodes. Thus, the proposed converters are called Quadratic-Boost (or Square-Boost) SSIs (QBIs or SBIs). Four different QBI topologies are presented. One with continuous input current (CC-QBI), and the other draws a discontinuous input current (DC-QBI) but with reduced capacitor voltage stresses. This paper also introduces the small-signal model of the CC-QBI using state variables perturbance. Based on this model, the closed-loop voltage and current control approach of the dc-boosting factor are designed. Moreover, a modified space vector modulation (MSVM) scheme is presented to reduce the input current ripples. To evaluate the performance of the proposed topologies, a comparative study between them and the other counterpart from different perspectives is introduced. It can be found that the CC-QBI topology has superior boosting characteristics when operating with low input voltage compared with their counterparts. It has a higher boosting capability, lower capacitor voltages, and semiconductor stresses, especially when high voltage gains are required. These merits make the proposed topologies convenient to the Photovoltaic and Fuel-Cell systems. Finally, the feasibility of the suggested topology and the introduced mathematical model is verified via simulation and experimental results, which show good accordance with the theoretical analysis. AuthorScopu

    Mitigation Voltage Sag Using DVR with Power Distribution Networks for Enhancing the Power System Quality

    Get PDF
    The fast developments in power electronic technology have made it possible to mitigate voltage disturbances in power system. Among the voltage disturbances challenging the industry, the voltage sags are considered the most important problem to the sensitive loads. The Dynamic Voltage Restorer (DVR) is mainly used in a utility grid to protect the sensitive loads from power quality problems, such as voltage sags and swells. However, the effectiveness of the DVR can wane under unbalanced grid voltage conditions. DVR is recognized to be the best effective solution to overcome this problem. The primary advantage of the DVR is keeping the users always on-line with high quality constant voltage maintaining the continuity of production. In this paper, the usefulness of including DVR in distribution system for the purpose of voltage sag and swell mitigation is described. This paper describes the DVR operation strategies and control. The DVR operation with the distribution networks is found very efficient for detecting and clearing any power quality disturbance in distribution systems. Results of simulation using MATLAB/Simulink are demonstrated to prove the usefulness of this DVR design and operation to enhance the power system quality

    Comparative study of back-stepping controller and super twisting sliding mode controller for indirect power control of wind generator

    Get PDF
    © 2021 Springer. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1007/s13198-019-00905-7This paper presents the application nonlinear control to regulate the rotor currents and control the active and reactive powers generated by the Doubly Fed Induction Generator used in the Wind Energy Conversion System (WECS). The proposed control strategies are based on Lyapunov stability theory and include back-stepping control (BSC) and super-twisting sliding mode control. The overall WECS model and control scheme are developed in MATLAB/Simulink and the simulation results have shown that the BSC leads to superior performance and improved transient response as compared to the STSMC controller.Peer reviewe
    corecore