38 research outputs found

    Potential of organic amendments for heavy metal contamination in soil–coriander system: environmental fate and associated ecological risk

    Get PDF
    Pollution by organic wastes and manures is an important problem in tropical and sub-tropical countries and novel solutions for their proper management and valorization are needed. Waste-derived organic manures may increase metal load in the soil–plant ecosystem and food chain, with potential risks to public health. The aim of this work was to evaluate the impact of three manures (poultry waste (PW), press mud (PM), and farmyard manure (FYM)) on heavy metals (HMs) (Cd, Co, Cr, Cu, Pb, Zn, Fe, Mn) toxicity in a soil and coriander (Coriandrum sativum L.) system and their environmental impact (bioaccumulation, pollution load) and the consequent risk to human health via consumption. Results demonstrated that HMs in coriander fluctuated from 0.40 to 0.43 for Cd, 1.84 to 3.52 for Co, 0.15 to 0.16 for Cr, 1.32 to 1.40 for Cu, 0.05 to 0.09 for Pb, 1.32 to 2.51 for Fe, 0.10 to 0.32 for Mn, and 2.01 to 8.70 mg/kg for Zn, respectively. Highest pollution load index value was 2.89 for Cd and Mn showed the lowest (0.005). Daily intake of metal was noticed to be higher for Zn (0.049 mg/kg/day) for PW and lower for Mn (0.0005) at FYM treatment. The health risk index value was <1 and in the range of 2.30–2.50 for Cd showing potential carcinogenicity. It was concluded that as the organic amendments have the widest application in vegetables, it should be prudent to avoid their contamination and mobilization in plant–soil ecosystems to protect public health perspectives.King Saud University | Ref. RSP-2021/21

    The impact of PEG-induced drought stress on seed germination and seedling growth of different bread wheat genotypes

    Get PDF
    Wheat is an important crop, used as staple food in numerous countries around the world. However, wheat productivity is low in the developing world due to several biotic and abiotic stresses, particularly drought stress. Non-availability of drought-tolerant wheat genotypes at different growth stages is the major constraint in improving wheat productivity in the developing world. Therefore, screening/developing drought-tolerant genotypes at different growth stages could improve the productivity of wheat. This study assessed seed germination and seedling growth of eight wheat genotypes under polyethylene glycol (PEG)-induced stress. Two PEG-induced osmotic potentials (i.e., -0.6 and -1.2 MPa) were included in the study along with control (0 MPa). Wheat genotypes included in the study were ‘KLR-16’, ‘B6’, ‘J10’, ‘716’, ‘A12’, ‘Seher’, ‘KTDH-16’, and ‘J4’. Data relating to seed germination percentage, root and shoot length, fresh and dry weight of roots and shoot, root/shoot length ratio and chlorophyll content were recorded. The studied parameters were significantly altered by individual and interactive effects of genotypes and PEG-induced osmotic potentials. Seed germination and growth parameters were reduced by osmotic potentials; however, huge differences were noted among genotypes. A reduction of 32.83 to 53.50% was recorded in seed germination, 24.611 to 47.75% in root length, 37.83 to 53.72% in shoot length, and 53.35 to 65.16% in root fresh weight. The genotypes, ‘J4’, ‘KLR-16’ and ‘KTDH-16’, particularly ‘J4’ better tolerated increasing osmotic potentials compared to the rest of the genotypes included in the study. Principal component analysis segregated these genotypes from the rest of the genotypes included in the study indicated that these can be used in the future studies to improve the drought tolerance of wheat crop. The genotype ‘J4’ can be used as a breeding material to develop drought resistant wheat genotypes

    Burnout among surgeons before and during the SARS-CoV-2 pandemic: an international survey

    Get PDF
    Background: SARS-CoV-2 pandemic has had many significant impacts within the surgical realm, and surgeons have been obligated to reconsider almost every aspect of daily clinical practice. Methods: This is a cross-sectional study reported in compliance with the CHERRIES guidelines and conducted through an online platform from June 14th to July 15th, 2020. The primary outcome was the burden of burnout during the pandemic indicated by the validated Shirom-Melamed Burnout Measure. Results: Nine hundred fifty-four surgeons completed the survey. The median length of practice was 10&nbsp;years; 78.2% included were male with a median age of 37&nbsp;years old, 39.5% were consultants, 68.9% were general surgeons, and 55.7% were affiliated with an academic institution. Overall, there was a significant increase in the mean burnout score during the pandemic; longer years of practice and older age were significantly associated with less burnout. There were significant reductions in the median number of outpatient visits, operated cases, on-call hours, emergency visits, and research work, so, 48.2% of respondents felt that the training resources were insufficient. The majority (81.3%) of respondents reported that their hospitals were included in the management of COVID-19, 66.5% felt their roles had been minimized; 41% were asked to assist in non-surgical medical practices, and 37.6% of respondents were included in COVID-19 management. Conclusions: There was a significant burnout among trainees. Almost all aspects of clinical and research activities were affected with a significant reduction in the volume of research, outpatient clinic visits, surgical procedures, on-call hours, and emergency cases hindering the training. Trial registration: The study was registered on clicaltrials.gov "NCT04433286" on 16/06/2020

    Comparative plasticity responses of stable isotopes of carbon (ÎŽ13C) and nitrogen (ÎŽ15N), Ion homeostasis and yield attributes in barley exposed to saline environment

    Get PDF
    Salinity is a major threat to agricultural productivity worldwide. The selection and evaluation of crop varieties that can tolerate salt stress are the main components for the rehabilitation of salt-degraded marginal soils. A field experiment was conducted to evaluate salinity tolerance potential, growth performance, carbon (ή13C) and nitrogen isotope composition (ή15N), intrinsic water use efficiency (iWUE), harvest index, and yield stability attributes in six barley genotypes (113/1B, 59/3A, N1-10, N1-29, Barjouj, Alanda01) at three salinity levels (0, 7, and 14 dS m−1). The number of spikes m−2 was highest in Alanda01 (620.8) while the lowest (556.2) was exhibited by Barjouj. Alanda01 produced the highest grain yield (3.96 t ha−1), while the lowest yield was obtained in 59/3A (2.31 t ha−1). Genotypes 113/1B, Barjouj, and Alanda01 demonstrate the highest negative ή13C values (−27.10‰, −26.49‰, −26.45‰), while the lowest values were obtained in N1-29 (−21.63‰) under salt stress. The ή15N was increased (4.93‰ and 4.59‰) after 7 and 14 dS m−1 as compared to control (3.12‰). The iWUE was higher in N1-29 (144.5) and N1-10 (131.8), while lowest in Barjouj (81.4). Grain protein contents were higher in 113/1B and Barjouj than other genotypes. We concluded that salt tolerant barley genotypes can be cultivated in saline marginal soils for food and nutrition security and can help in the rehabilitation of marginal lands.King Saud University | Ref. RSP-2021/19

    Biodegradation mechanism of phenanthrene by halophilic hortaea sp. B15

    Get PDF
    This aim of the study is to investigate a halophilic bacterium Hortaea sp. B15, isolated from petroleum-contaminated soil for biodegradation of phenanthrene. Hortaea sp. B15 has the ability to completely degrade phenanthrene (100 mg/L) under salinity 10% within 1-week incubation. The metabolitic product of phenanthrene was identified and assayed by using ultraviolet-visible spectrophotometer and mass spectral analysis. Result revealed that Hortaea sp. B15 metabolized phenanthrene to form 9,10-phenanthrene quinone, salicylic acid, and gentisic acid. Hortaea sp. B15 has an efficient utilization of phenanthrene in high-saline liquid medium. All the results indicated that the fungus has a promising application for the study of high-molecular-weight PAH biodegradation and contaminated saline-alkali soil bioremediation

    Growth and dry matter partitioning response in cereal-legume intercropping under full and limited irrigation regimes

    No full text
    Abstract The dry matter partitioning is the product of the flow of assimilates from the source organs (leaves and stems) along the transport route to the storage organs (grains). A 2-year field experiment was conducted at the agronomy research farm of the University of Agriculture Peshawar, Pakistan during 2015–2016 (Y1) to 2016–2017 (Y2) having semiarid climate. Four summer crops, pearl millet (Pennisetum typhoidum L.), sorghum (Sorghum bicolor L.) and mungbean (Vigna radiata L.) and pigeonpea (Cajanus cajan L.) and four winter crops, wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), fababean (Vicia faba) and rapeseed (Brassica napus) were grown under two irrigation regimes (full vs. limited irrigation) with the pattern of growing each crop either alone as sole crop or in combination of two crops in each intercropping system under both winter and summer seasons. The result showed that under full irrigated condition (no water stress), all crops had higher crop growth rate (CGR), leaf dry weight (LDW), stem dry weight (SDW), and spike/head dry weight (S/H/PDW) at both anthesis and physiological maturity (PM) than limited irrigated condition (water stress). In winter crops, both wheat and barley grown as sole crop or intercropped with fababean produced maximum CGR, LDW, SDW, S/H/PDW than other intercrops. Among summer crops, sorghum intercropped either with pigeon pea or with mungbean produced maximum CGR, LDW, SDW, and S/H/PDW at both growth stages. Sole mungbean and pigeon pea or pigeon pea and mungbean intercropping had higher CGR, LDW, SDW, S/H/PDW than millet and sorghum intercropping. On the other hand, wheat and barley grown as sole crops or intercropped with fababean produced maximum CGR, LDW, SDW, and S/H/PDW than other intercrops. Fababean grown as sole crop or intercropped with wheat produced higher CGR, LDW, SDW, and S/H/PDW at PM than intercropped with barley or rapeseed. From the results it was concluded that cereal plus legume intercropping particularly wheat/fababean in winter and sorghum/pigeon pea or sorgum/mungbean in summer are the most productive intercropping systems under both low and high moisture regimes

    Pesticidal potential of some wild plant essential oils against grain pests Tribolium castaneum (Herbst, 1797) and Aspergillus flavus (Link, 1809)

    No full text
    The red flour beetle, Tribolium castaneum, and the mold Aspergillus flavus are well known threats of stored grain commodities, causing nutritional loss and poisoning of stored products, respectively. T. castaneum has developed resistance against most insecticides, leading to the use of extensive amounts of synthetic insecticides to protect stored grains. Synthetic pesticides not only toxify the environment but also cause serious health issues in humans using pesticide treated grains. This study aimed to identify plant-based natural pesticides to control T. castaneum and A. flavus. Essential oils were extracted from fresh aerial parts of Chenopodium ambrosioides, Conyza sumatrensis, Erigeron canadensis, and Tagetes minuta through steam distillation and investigated for insecticidal and anti-fungal activities against adult T. castaneum and A. flavus, respectively. GC–MS analysis of C. sumatrensis revealed the presence of 37.7% cis-lachnophyllum ester, 13.4% germacrene D, and 21.6% limonene, whereas in E. canadensis the major compounds were limonene, germacrene D, and cis-lachnophyllum ester (43.4%, 12.9% and 5.9%, respectively). In bioassays with treated grain, C. sumatrensis and E. canadensis essential oils exhibited excellent toxicity against adult T. castaneum with LD50 of 3.7 and 5.6 mg per 10 g grains whereas in a fumigation bioassay they showed LD50 of 6.6 and 10.6 mg/L, respectively. The essential oils extracted from C. ambrosioides and E. canadensis exhibited good anti-fungal activity against A. flavus. Our findings suggest that essential oils of C. sumatrensis and E. canadensis can play an important role in protecting stored grains from T. castaneum and A. flavus contamination

    Large Scale Screening of Rhizospheric Allelopathic Bacteria and Their Potential for the Biocontrol of Wheat-Associated Weeds

    No full text
    Conventional weed control practices have generated serious issues related to the environment and human health. Therefore, there is a demand for the development of alternative techniques for sustainable agriculture. The present study performed a large-scale screening of allelopathic bacteria from the rhizosphere of weeds and wheat to obtain biological weed control inoculants in the cultivation of wheat. Initially, around 400 strains of rhizobacteria were isolated from the rhizosphere of weeds as well as wheat that grows in areas of chronic weed invasions. A series of the screen was performed on these strains, including the release of phytotoxic metabolites, growth inhibition of sensitive Escherichia coli, growth inhibition of indicator plant of lettuce, agar bioassays on five weeds, and agar bioassay on wheat. Firstly, 22.6% (89 strains) of the total strains were cyanogenic, and among the cyanogenic strains, 21.3% (19 strains) were inhibitory to the growth of sensitive E. coli. Then, these 19 strains were tested using lettuce seedling bioassay to show that eight strains suppressed, nine strains promoted, and two strains remained ineffective on the growth. These 19 strains were further applied to weeds and wheat on agar bioassays. The results indicated that dry matter of broad-leaved dock, wild oat, little seed canary grass, and common lambs&rsquo; quarter were reduced by eight strains (23.1&ndash;68.1%), seven strains (38.5&ndash;80.2%), eight strains (16.5&ndash;69.4%), and three strains (27.5&ndash;50.0%), respectively. Five strains suppressed the growth of wheat, nine strains increased its dry matter (12.8&ndash;47.9%), and five remained ineffective. Altogether, the strains that selectively inhibit weeds, while retaining normal growth of wheat, can offer good opportunities for the development of biological weed control in the cultivation of wheat

    Formulation of Biochar-Based Phosphorus Fertilizer and Its Impact on Both Soil Properties and Chickpea Growth Performance

    No full text
    There is no alternative to phosphorus (P) in agriculture as it is second most important plant nutrient after nitrogen. Mineral P fertilizers are derived from rock phosphate (RP) which is finite, non-renewable and geographically restricted to a few countries, thus its shortage likely affects agriculture in near future as the world population is growing at a greater pace. This could increase P inputs in agriculture in order to meet rising food demands which may result in the depletion of RP reserves. Furthermore, P losses from farmlands in case of mineral P fertilizers also demands the sustainable use of P not only because of its finite resources but also the environmental concerns associated with P fertilization such as eutrophication. The present study was designed to formulate biochar-based P fertilizer that would help in the sustainable use of P fertilizer. Biochar(s) were prepared using wheat straw at 350&ndash;400 &deg;C pyrolytic temperature followed by enrichment with Di-ammonium phosphate (DAP) taking into account all possible combination of DAP to biochar on the w/w basis (0:100, 25:75, 50:50, 75:25 and 100:0). Enrichment was carried out using two different methods i.e., phosphorus enriched biochar (PEB1) by hot method and cold method (PEB2). An incubation experiment was performed to assess the impact of each biochar on selected properties of soil. The treatments were organized in factorial arrangement under complete randomized design (CRD) with three replications. Both the amendments were applied at rate of 1% of dry soil on a w/w basis. A significant increase in soil extractable P and total nitrogen (N) was recorded for the ratio 50:50 as compared to control as well of rest of treatments. Similarly, high organic contents were found for both PEB1 and PEB2 at the ratio 50:50. An incubation experiment was followed by pot trial using 50:50 for both PEB1 and PEB2 and split doses of recommended P were applied (0%, 25%, 50% and 100%) with a control under CRD with three replications using chickpea as test crop. Both PEB1 and PEB2 with 50% P have significantly improved crop growth, yield, nodulation, and plant physiological and chemical parameters as compared to a recommended dose of P alone. The result may imply that the integration of P-enriched biochar and chemical fertilizer could be an effective approach to improve chickpea production and soil properties
    corecore