42 research outputs found

    Potential of organic amendments for heavy metal contamination in soil–coriander system: environmental fate and associated ecological risk

    Get PDF
    Pollution by organic wastes and manures is an important problem in tropical and sub-tropical countries and novel solutions for their proper management and valorization are needed. Waste-derived organic manures may increase metal load in the soil–plant ecosystem and food chain, with potential risks to public health. The aim of this work was to evaluate the impact of three manures (poultry waste (PW), press mud (PM), and farmyard manure (FYM)) on heavy metals (HMs) (Cd, Co, Cr, Cu, Pb, Zn, Fe, Mn) toxicity in a soil and coriander (Coriandrum sativum L.) system and their environmental impact (bioaccumulation, pollution load) and the consequent risk to human health via consumption. Results demonstrated that HMs in coriander fluctuated from 0.40 to 0.43 for Cd, 1.84 to 3.52 for Co, 0.15 to 0.16 for Cr, 1.32 to 1.40 for Cu, 0.05 to 0.09 for Pb, 1.32 to 2.51 for Fe, 0.10 to 0.32 for Mn, and 2.01 to 8.70 mg/kg for Zn, respectively. Highest pollution load index value was 2.89 for Cd and Mn showed the lowest (0.005). Daily intake of metal was noticed to be higher for Zn (0.049 mg/kg/day) for PW and lower for Mn (0.0005) at FYM treatment. The health risk index value was <1 and in the range of 2.30–2.50 for Cd showing potential carcinogenicity. It was concluded that as the organic amendments have the widest application in vegetables, it should be prudent to avoid their contamination and mobilization in plant–soil ecosystems to protect public health perspectives.King Saud University | Ref. RSP-2021/21

    Phytoremediation of bauxite wastewater potentiality by Jatropa curcas

    Get PDF
    Bauxite wastewater creates soil contamination and produces toxic effects on human health such as respiratory and skin rash problems. In this study, we investigated the phytoremediation ability of Jatropha curcas to remove bauxite wastewater from soil. Pot experiments were conducted to investigate the bauxite wastewater on the phytoremediation potential of J. curcas grown in contaminated soils. J. curcas exhibited a significant increase in plant growth leaf, root activity, plant height, and plant shoot when grown in bauxite contaminated soils compared with J. curcas grown in uncontaminated soils after 30 d treatment. Under bauxite exposure, a higher aluminium removal (88.5%) was observed in soils planted with J. curcas than unplanted soils (39.6%). The bioconcentration factor was also found to be 5.62, indicating that J. curcas have great tolerance and hyperaccumulator of aluminium under high aluminium concentrations and are capable of phytoextraction of soil contaminated with bauxite wastewater

    Biosynthesis and characterization of silver nanoparticles from Cedrela toona leaf extracts: An exploration into their antibacterial, anticancer, and antioxidant potential

    Get PDF
    This research work aims to synthesize environmentally benign and cost-effective metal nanoparticles. In this current research scenario, the leaf extract of Cedrela toona was used as a reducing agent to biosynthesize silver nanoparticles (AgNPs). The synthesis of AgNPs was confirmed by the color shift of the reaction mixture, i.e., silver nitrate and plant extract, from yellow to dark brown colloidal suspension and was established by UV-visible analysis showing a surface plasmon resonance band at 434 nm. Different experimental factors were optimized for the formation and stability of AgNPs, and the optimum conditions were found to be 1 mM AgNO3 concentration, a 1:9 ratio of extract/precursor, and an incubation temperature of 70°C for 4 h. The Fourier transform infrared spectroscopy spectra indicated the presence of phytochemicals in the leaf extract that played the role of bioreducing agents in forming AgNPs. X-ray diffraction patterns confirmed the presence of AgNPs with a mean size of 25.9 nm. The size distribution and morphology of AgNPs were investigated by scanning electron microscopy, which clearly highlighted spherical nanoparticles with a size distribution of 22–30 nm with a mean average size of 25.5 nm. Moreover, prominent antibacterial activity was found against Enterococcus faecalis (21 ± 0.5 mm), Bacillus subtilis (20 ± 0.9 mm), Pseudomonas aeruginosa (18 ± 0.3 mm), Staphylococcus aureus (16 ± 0.7 mm), Klebsiella pneumoniae (16 ± 0.3 mm), and Escherichia coli (14 ± 0.7 mm). In addition, antioxidant activity was determined by DPPH and ABTS assays. Higher antioxidant activity was reported in AgNPs compared to the plant extract in both DPPH (IC50 = 69.62 µg·ml−1) and ABTS assays (IC50 = 47.90 µg·ml−1). Furthermore, cytotoxic activity was also investigated by the MTT assay against MCF-7 cells, and IC50 was found to be 32.55 ± 0.05 µg·ml−1. The crux of this research is that AgNPs synthesized from the Cedrela toona leaf extract could be employed as antibacterial, antioxidant, and anticancer agents for the treatment of bacterial, free radical-oriented, and cancerous diseases

    The impact of PEG-induced drought stress on seed germination and seedling growth of different bread wheat genotypes

    Get PDF
    Wheat is an important crop, used as staple food in numerous countries around the world. However, wheat productivity is low in the developing world due to several biotic and abiotic stresses, particularly drought stress. Non-availability of drought-tolerant wheat genotypes at different growth stages is the major constraint in improving wheat productivity in the developing world. Therefore, screening/developing drought-tolerant genotypes at different growth stages could improve the productivity of wheat. This study assessed seed germination and seedling growth of eight wheat genotypes under polyethylene glycol (PEG)-induced stress. Two PEG-induced osmotic potentials (i.e., -0.6 and -1.2 MPa) were included in the study along with control (0 MPa). Wheat genotypes included in the study were ‘KLR-16’, ‘B6’, ‘J10’, ‘716’, ‘A12’, ‘Seher’, ‘KTDH-16’, and ‘J4’. Data relating to seed germination percentage, root and shoot length, fresh and dry weight of roots and shoot, root/shoot length ratio and chlorophyll content were recorded. The studied parameters were significantly altered by individual and interactive effects of genotypes and PEG-induced osmotic potentials. Seed germination and growth parameters were reduced by osmotic potentials; however, huge differences were noted among genotypes. A reduction of 32.83 to 53.50% was recorded in seed germination, 24.611 to 47.75% in root length, 37.83 to 53.72% in shoot length, and 53.35 to 65.16% in root fresh weight. The genotypes, ‘J4’, ‘KLR-16’ and ‘KTDH-16’, particularly ‘J4’ better tolerated increasing osmotic potentials compared to the rest of the genotypes included in the study. Principal component analysis segregated these genotypes from the rest of the genotypes included in the study indicated that these can be used in the future studies to improve the drought tolerance of wheat crop. The genotype ‘J4’ can be used as a breeding material to develop drought resistant wheat genotypes

    Burnout among surgeons before and during the SARS-CoV-2 pandemic: an international survey

    Get PDF
    Background: SARS-CoV-2 pandemic has had many significant impacts within the surgical realm, and surgeons have been obligated to reconsider almost every aspect of daily clinical practice. Methods: This is a cross-sectional study reported in compliance with the CHERRIES guidelines and conducted through an online platform from June 14th to July 15th, 2020. The primary outcome was the burden of burnout during the pandemic indicated by the validated Shirom-Melamed Burnout Measure. Results: Nine hundred fifty-four surgeons completed the survey. The median length of practice was 10&nbsp;years; 78.2% included were male with a median age of 37&nbsp;years old, 39.5% were consultants, 68.9% were general surgeons, and 55.7% were affiliated with an academic institution. Overall, there was a significant increase in the mean burnout score during the pandemic; longer years of practice and older age were significantly associated with less burnout. There were significant reductions in the median number of outpatient visits, operated cases, on-call hours, emergency visits, and research work, so, 48.2% of respondents felt that the training resources were insufficient. The majority (81.3%) of respondents reported that their hospitals were included in the management of COVID-19, 66.5% felt their roles had been minimized; 41% were asked to assist in non-surgical medical practices, and 37.6% of respondents were included in COVID-19 management. Conclusions: There was a significant burnout among trainees. Almost all aspects of clinical and research activities were affected with a significant reduction in the volume of research, outpatient clinic visits, surgical procedures, on-call hours, and emergency cases hindering the training. Trial registration: The study was registered on clicaltrials.gov "NCT04433286" on 16/06/2020

    Comparative plasticity responses of stable isotopes of carbon (δ13C) and nitrogen (δ15N), Ion homeostasis and yield attributes in barley exposed to saline environment

    Get PDF
    Salinity is a major threat to agricultural productivity worldwide. The selection and evaluation of crop varieties that can tolerate salt stress are the main components for the rehabilitation of salt-degraded marginal soils. A field experiment was conducted to evaluate salinity tolerance potential, growth performance, carbon (δ13C) and nitrogen isotope composition (δ15N), intrinsic water use efficiency (iWUE), harvest index, and yield stability attributes in six barley genotypes (113/1B, 59/3A, N1-10, N1-29, Barjouj, Alanda01) at three salinity levels (0, 7, and 14 dS m−1). The number of spikes m−2 was highest in Alanda01 (620.8) while the lowest (556.2) was exhibited by Barjouj. Alanda01 produced the highest grain yield (3.96 t ha−1), while the lowest yield was obtained in 59/3A (2.31 t ha−1). Genotypes 113/1B, Barjouj, and Alanda01 demonstrate the highest negative δ13C values (−27.10‰, −26.49‰, −26.45‰), while the lowest values were obtained in N1-29 (−21.63‰) under salt stress. The δ15N was increased (4.93‰ and 4.59‰) after 7 and 14 dS m−1 as compared to control (3.12‰). The iWUE was higher in N1-29 (144.5) and N1-10 (131.8), while lowest in Barjouj (81.4). Grain protein contents were higher in 113/1B and Barjouj than other genotypes. We concluded that salt tolerant barley genotypes can be cultivated in saline marginal soils for food and nutrition security and can help in the rehabilitation of marginal lands.King Saud University | Ref. RSP-2021/19

    Biodegradation mechanism of phenanthrene by halophilic hortaea sp. B15

    Get PDF
    This aim of the study is to investigate a halophilic bacterium Hortaea sp. B15, isolated from petroleum-contaminated soil for biodegradation of phenanthrene. Hortaea sp. B15 has the ability to completely degrade phenanthrene (100 mg/L) under salinity 10% within 1-week incubation. The metabolitic product of phenanthrene was identified and assayed by using ultraviolet-visible spectrophotometer and mass spectral analysis. Result revealed that Hortaea sp. B15 metabolized phenanthrene to form 9,10-phenanthrene quinone, salicylic acid, and gentisic acid. Hortaea sp. B15 has an efficient utilization of phenanthrene in high-saline liquid medium. All the results indicated that the fungus has a promising application for the study of high-molecular-weight PAH biodegradation and contaminated saline-alkali soil bioremediation

    Growth and dry matter partitioning response in cereal-legume intercropping under full and limited irrigation regimes

    No full text
    Abstract The dry matter partitioning is the product of the flow of assimilates from the source organs (leaves and stems) along the transport route to the storage organs (grains). A 2-year field experiment was conducted at the agronomy research farm of the University of Agriculture Peshawar, Pakistan during 2015–2016 (Y1) to 2016–2017 (Y2) having semiarid climate. Four summer crops, pearl millet (Pennisetum typhoidum L.), sorghum (Sorghum bicolor L.) and mungbean (Vigna radiata L.) and pigeonpea (Cajanus cajan L.) and four winter crops, wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), fababean (Vicia faba) and rapeseed (Brassica napus) were grown under two irrigation regimes (full vs. limited irrigation) with the pattern of growing each crop either alone as sole crop or in combination of two crops in each intercropping system under both winter and summer seasons. The result showed that under full irrigated condition (no water stress), all crops had higher crop growth rate (CGR), leaf dry weight (LDW), stem dry weight (SDW), and spike/head dry weight (S/H/PDW) at both anthesis and physiological maturity (PM) than limited irrigated condition (water stress). In winter crops, both wheat and barley grown as sole crop or intercropped with fababean produced maximum CGR, LDW, SDW, S/H/PDW than other intercrops. Among summer crops, sorghum intercropped either with pigeon pea or with mungbean produced maximum CGR, LDW, SDW, and S/H/PDW at both growth stages. Sole mungbean and pigeon pea or pigeon pea and mungbean intercropping had higher CGR, LDW, SDW, S/H/PDW than millet and sorghum intercropping. On the other hand, wheat and barley grown as sole crops or intercropped with fababean produced maximum CGR, LDW, SDW, and S/H/PDW than other intercrops. Fababean grown as sole crop or intercropped with wheat produced higher CGR, LDW, SDW, and S/H/PDW at PM than intercropped with barley or rapeseed. From the results it was concluded that cereal plus legume intercropping particularly wheat/fababean in winter and sorghum/pigeon pea or sorgum/mungbean in summer are the most productive intercropping systems under both low and high moisture regimes

    Characteristics and optical properties of atmospheric aerosols based on long-term AERONET investigations in an urban environment of Pakistan

    No full text
    Abstract Radiative balance, local climate, and human health are all significantly influenced by aerosol. Recent severe air pollution over Lahore, a city in Pakistan calls for more thorough research to determine the negative impacts brought on by too many aerosols. To study regional aerosol characteristics and their differences from various aspects, in-depth and long-term (2007–2020) investigations of the columnar aerosol properties over the urban environment of Lahore were carried out by using AERONET data. The Aerosol Optical Depth (AOD400) and Angstrom Exponent (AE400–870) vary from low values of 0.10 to a maximum value of 4.51 and from 0.03 to 1.81, respectively. The huge differences in the amount of AOD440 as well as AE440–870 show the large fluctuation of aerosol classes because of various sources of their emission. During the autumn and winter seasons, the decreasing trend of the optical parameters of aerosols like Single Scattering Albedo (SSA) and Asymmetry Parameter (ASY) with increasing wavelength from 675 to 1020 nm indicates the dominance of light-absorbing aerosols (biomass burning (BB) and industrial/urban (UI). Due to the long-distance dust movement during spring, summer, and autumn, coarse mode particles predominated in Lahore during the study period. Dust type (DD) aerosols are found to be the dominant one during spring (46.92%), summer (54.31%), and autumn (57.46%) while urban industry (BB/UI) was dominant during the winter season (53.21%). During each season, the clean continental (CC) aerosols are found to be in negligible amounts, indicating terrible air quality in Lahore City. The present research work fills up the study gap in the optical properties of aerosols in Lahore and will help us understand more fully how local aerosol fluctuation affects regional climate change over the urban environment of Lahore
    corecore