

Biodegradation Mechanism of Phenanthrene by Halophilic Hortaea sp. B15

Risky Ayu Kristanti^a; Tony Hadibarata^b; Dunia A. Al Farraj^c; Mohamed Soliman Elshikh^c; Roua M. Alkufeidy^c

^aFaculty of Engineering TechnologyUniversiti Malaysia PahangGambangMalaysia ^bDepartment of Environmental Engineering, Faculty of Engineering and ScienceCurtin UniversityMiriMalaysia

^cBotany and Microbiology Department, College of ScienceKing Saud UniversityRiyadhSaudi Arabia

ABSTRACT

This aim of the study is to investigate a halophilic bacterium *Hortaea* sp. B15, isolated from petroleum-contaminated soil for biodegradation of phenanthrene. *Hortaea* sp. B15 has the ability to completely degrade phenanthrene (100 mg/L) under salinity 10% within 1-week incubation. The metabolitic product of phenanthrene was identified and assayed by using ultraviolet-visible spectrophotometer and mass spectral analysis. Result revealed that *Hortaea*sp. B15 metabolized phenanthrene to form 9,10-phenanthrene quinone, salicylic acid, and gentisic acid. *Hortaea* sp. B15 has an efficient utilization of phenanthrene in high-saline liquid medium. All the results indicated that the fungus has a promising application for the study of high-molecular-weight PAH biodegradation and contaminated saline-alkali soil bioremediation.

KEYWORDS:

Hortaea sp. B15; Phenanthrene; Biotransformation; Metabolites