112 research outputs found

    Hepatitis B virus and hepatitis C virus in pregnant Sudanese women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The epidemiology of viral hepatitis during pregnancy is essential for health planners and programme managers. While much data exist concerning viral hepatitis during pregnancy in many African countries, no proper published data are available in Sudan.</p> <p>Aim</p> <p>The study aimed to investigate the sero-prevalance and the possible risk factors for hepatitis B virus (HBV) and hepatitis C virus (HCV) among antenatal care attendants in central Sudan.</p> <p>Methods</p> <p>During 3 months from March–June 2006, sera were collected from pregnant women at Umdurman Maternity Hospital in Sudan, and they were tested for markers of hepatitis B virus (HBVsAg) and HCV.</p> <p>Results</p> <p>HBVsAg was detected in 41 (5.6%) out 728 women, Anti-HCV was detected in 3 (0.6%) out of 423 women, all of them were not aware of their condition. Age, parity, gestational age, residence, history of blood transfusion, dental manipulations, tattooing and circumcision did not contribute significantly to increased HBVsAg sero-positivity.</p> <p>Conclusion</p> <p>Thus 5.6% of pregnant women were positive for HBVsAg irrespective of their age, parity and socio-demographic characteristics. There was low prevalence of Anti-HCV.</p

    A Packet Scheduling Scheme for Improving Real-time Applications Performance in Downlink LTE–advanced

    Get PDF
    Quality of Service based packet scheduling is a key-feature of LTE-A mandating selection and transmission of individual user packets based on their priority. HARQ Aware Scheduling, Retransmission Aware Proportional Fair, Chase Combining Based Max C/I Scheduling and Maximum- Largest Weighted First (M-LWDF) are popular Packet Scheduling Algorithms (PSAs) developed to meet QoS requirements. In highly erroneous LTE-A cannel, M-LWDF is considered to be one of best PSA. To validate the performance of M-LWDF for the LTE-A channel, Mean User Throughout, and Fairness performance measures were evaluated for 3 different PSAs designed based on M-LWDF algorithm in this paper. A C++ based simulation results indicate the superiority of the PSA3 algorithm within the threshold of the performance measures against benchmarks. It has shown more efficiency and the performance of RTA traffic was enhanced. Results show that PSA3 is superior to its benchmark PSA2 by 12% in Mean User Throughput and 11% in Fairness. PSA2 performed the worst because it prioritizes new users and it allocated all available RBs to the scheduled user leaving the rest to wait in the buffer. PSA3 maintians good Mean User Throughput and fairnessdue to scheduling each user on its RB which leads to multi-user diversity

    Maximum-largest weighted delay first algorithm for heterogeneous traffic in 4G networks

    Get PDF
    Real time applications with strict QoS like delay sensitive applications require an advanced technology to adopt them. This is where Long Term Evolution-Advanced (LTE-A) fulfills this requirement. With this ever evolving technology the need for improvements is required. Packet scheduling is one of the important key features of LTE-A, where it dictates user selection and transmission of those user’s packets based on the priority of the users to reach the receiver correctly. Packet scheduling is one mean to achieve those QoS requirements that real-time applications require. Such algorithms are HARQ Aware Scheduling Algorithm (HAS), Retransmission Aware Proportional Fair Algorithm (RAPF), Chase Combining Based Max C/I Scheduling and Maximum- Largest WeightedDealy First algorithm (M-LWDF). In this paper, M-LWDF is one of the best algorithms in LTE-A which was chosen for further investigated to support QoS in high mobility environment. Packet Loss Ratio (PLR), and Mean User Throughput performance measures were used to validate the performance of M-LWDF algorithm against other algorithms using similar mobile environment. Simulation results indicate the capability of M-LWDF algorithm within the threshold of the performance measures against other benchmarks where it has demonstrated more efficiency to support and improve the performance of real-time multimedia traffic

    Maximum-Largest Weighted Delay First Algorithm for Heterogeneous Traffic in 4G Networks

    Get PDF
    Real time applications with strict QoS like delay sensitive applications require an advanced technology to adopt them. This is where Long Term Evolution-Advanced (LTE-A) fulfills this requirement. With this ever evolving technology the need for improvements is required. Packet scheduling is one of the important key features of LTE-A, where it dictates user selection and transmission of those user’s packets based on the priority of the users to reach the receiver correctly. Packet scheduling is one mean to achieve those QoS requirements that real-time applications require. Such algorithms are HARQ Aware Scheduling Algorithm (HAS), Retransmission Aware Proportional Fair Algorithm (RAPF), Chase Combining Based Max C/I Scheduling and Maximum- Largest WeightedDealy First algorithm (M-LWDF). In this paper, M-LWDF is one of the best algorithms in LTE-A which was chosen for further investigated to support QoS in high mobility environment. Packet Loss Ratio (PLR), and Mean User Throughput performance measures were used to validate the performance of M-LWDF algorithm against other algorithms using similar mobile environment. Simulation results indicate the capability of M-LWDF algorithm within the threshold of the performance measures against other benchmarks where it has demonstrated more efficiency to support and improve the performance of real-time multimedia traffic

    Seismic Anisotropy and Subduction-Induced Mantle Fabrics beneath the Arabian and Nubian Plates Adjacent to the Red Sea

    Get PDF
    For most continental areas, the mechanisms leading to mantle fabrics responsible for the observed anisotropy remain ambiguous, partially due to the lack of sufficient spatial coverage of reliable seismological observations. Here we report the first joint analysis of shear-wave splitting measurements obtained at stations on the Arabian and Nubian Plates adjacent to the Red Sea. More than 1100 pairs of high-quality splitting parameters show dominantly N-S fast orientations at all 47 stations and larger-than-normal splitting times beneath the Afro-Arabian Dome (AAD). The uniformly N-S fast orientations and large splitting times up to 1.5 s are inconsistent with significant contributions from the lithosphere, which is about 50–80 km thick beneath the AAD and even thinner beneath the Red Sea. The results can best be explained by simple shear between the lithosphere and the asthenosphere associated with northward subduction of the African/Arabian Plates over the past 150 Ma

    Azimuthal Anisotropy beneath North Central Africa from Shear Wave Splitting Analyses

    Get PDF
    This study represents the first multistation investigation of azimuthal anisotropy beneath the interior of north central Africa, including Libya and adjacent regions, using shear wave splitting (SWS) analysis. Data used in the study include recently available broadband seismic data obtained from 15 stations managed by the Libyan Center for Remote Sensing and Space Science, and those from five other stations at which data are publicly accessible. A total of 583 pairs of high-quality SWS measurements utilizing the PKS, SKKS, and SKS phases demonstrate primarily N-S fast orientations with an average splitting delay time of approximately 1.2 s. An absence of periodic azimuthal variation of the observed splitting parameters indicates the presence of simple anisotropy, and lack of correlation between surficial features and the splitting parameters suggests that the origin of the observed anisotropy is primarily asthenospheric. This conclusion is enhanced by nonperiodic azimuthal variation of the splitting parameters observed at one of the stations located near the boundary of areas with different anisotropic properties. We interpret the observed anisotropy to be the consequence of northward movement of the African plate relative to the asthenosphere toward the Hellenic and Calabrian subduction zones. Local variance in fast orientations may be attributable to flow deflection by the northern edge of the African continental root. The observations provide critical and previously lacking constraints on mantle dynamic models in the vicinity of the convergent boundary between the African and Eurasian plates

    Seismic Anisotropy and Mantle Flow beneath the Northern Great Plains of North America

    Get PDF
    A diverse set of tectonic features and the recent availability of high-quality broadband seismic data from the USArray and other stations on the northern Great Plains of North America provide a distinct opportunity to test different anisotropy-forming mechanisms. A total of 4138 pairs of well-defined splitting parameters observed at 445 stations show systematic spatial variations of anisotropic characteristics. Azimuthally invariant fast orientations subparallel to the absolute plate motion (APM) direction are observed at most of the stations on the Superior Craton and the southern Yavapai province, indicating that a single layer of anisotropy with a horizontal axis of symmetry is sufficient to explain the anisotropic structure. For areas with simple anisotropy, the application of a procedure for estimating the depth of anisotropy using spatial coherency of splitting parameters results in a depth of 200–250 km, suggesting that the observed anisotropy mostly resides in the upper asthenosphere. In the vicinity of the northern boundary of the Yavapai province and the Wyoming Craton, the splitting parameters can be adequately explained by a two-horizontal layer model. The lower layer has an APM-parallel fast orientation, and the upper layer has a fast orientation that is mostly consistent with the regional strike of the boundary. Based on the splitting measurements and previous results from seismic tomography and geodynamic modeling, we propose a model involving deflecting of asthenosphere flow by the bottom of the lithosphere and channeling of flow by a zone of thinned lithosphere approximately along the northern boundary of the Yavapai province
    • …
    corecore