291 research outputs found

    Interplay of structure and spin-orbit strength in magnetism of metal-benzene sandwiches: from single molecules to infinite wires

    Full text link
    Based on first-principles density functional theory calculations we explore electronic and magnetic properties of experimentally producible sandwiches and infinite wires made of repeating benzene molecules and transition-metal atoms of V, Nb, and Ta. We describe the bonding mechanism in the molecules and in particular concentrate on the origin of magnetism in these structures. We find that all the considered systems have sizable magnetic moments and ferromagnetic spin-ordering, with the single exception of the V3-Bz4 molecule. By including the spin-orbit coupling into our calculations we determine the easy and hard axes of the magnetic moment, the strength of the uniaxial magnetic anisotropy energy (MAE), relevant for the thermal stability of magnetic orientation, and the change of the electronic structure with respect to the direction of the magnetic moment, important for spin-transport properties. While for the V-based compounds the values of the MAE are only of the order of 0.05-0.5 meV per metal atom, increasing the spin-orbit strength by substituting V with heavier Nb and Ta allows to achieve an increase in anisotropy values by one to two orders of magnitude. The rigid stability of magnetism in these compounds together with the strong ferromagnetic ordering makes them attractive candidates for spin-polarized transport applications. For a Nb-benzene infinite wire the occurrence of ballistic anisotropic magnetoresistance is demonstrated.Comment: 23 pages, 8 figure

    Monomeric 16-Electron π-Diborene Complexes of Zn(II) and Cd(II)

    Get PDF
    Despite the prevalence of stable π-complexes of most d10 metals, such as Cu(I) and Ni(0), with ethylene and other olefins, complexation of d10 Zn(II) to simple olefins is too weak to form isolable complexes due to the metal ion's limited capacity for π-backdonation. By employing more strongly donating π-ligands, namely neutral diborenes with a high-lying π(B=B) orbital, monomeric 16-electron M(II)-diborene (M = Zn, Cd) π-complexes were synthesized in good yields. Metal–B2 π-interactions in both the solid and solution state were confirmed by single-crystal X-ray analyses and their solution NMR and UV-vis absorption spectroscopy, respectively. The M(II) centers adopt a trigonal planar geometry and interact almost symmetrically with both boron atoms. The MB2 planes significantly twist out of the MX2 planes about the M-centroid(B–B) vector, with angles ranging from 47.0° to 85.5°, depending on the steric interactions between the diborene ligand and the MX2 fragment

    Flavor decomposition of the sea quark helicity distributions in the nucleon from semi-inclusive deep-inelastic scattering

    Full text link
    Double-spin asymmetries of semi-inclusive cross sections for the production of identified pions and kaons have been measured in deep-inelastic scattering of polarized positrons on a polarized deuterium target. Five helicity distributions including those for three sea quark flavors were extracted from these data together with re-analyzed previous data for identified pions from a hydrogen target. These distributions are consistent with zero for all three sea flavors. A recently predicted flavor asymmetry in the polarization of the light quark sea appears to be disfavored by the data.Comment: 5 pages, 3 figure

    Nuclear Polarization of Molecular Hydrogen Recombined on a Non-metallic Surface

    Full text link
    The nuclear polarization of H2\mathrm{H}_2 molecules formed by recombination of nuclear polarized H atoms on the surface of a storage cell initially coated with a silicon-based polymer has been measured by using the longitudinal double-spin asymmetry in deep-inelastic positron-proton scattering. The molecules are found to have a substantial nuclear polarization, which is evidence that initially polarized atoms retain their nuclear polarization when absorbed on this type of surfac

    Single-spin asymmetries in semi-inclusive deep-inelastic scattering on a transversely polarized hydrogen target

    Full text link
    Single-spin asymmetries for semi-inclusive electroproduction of charged pions in deep-inelastic scattering of positrons are measured for the first time with transverse target polarization. The asymmetry depends on the azimuthal angles of both the pion (ϕ\phi) and the target spin axis (ϕS\phi_S) about the virtual photon direction and relative to the lepton scattering plane. The extracted Fourier component \cmpi is a signal of the previously unmeasured quark transversity distribution, in conjunction with the so-called Collins fragmentation function, also unknown. The Fourier component \smpi of the asymmetry arises from a correlation between the transverse polarization of the target nucleon and the intrinsic transverse momentum of quarks, as represented by the previously unmeasured Sivers distribution function. Evidence for both signals is observed, but the Sivers asymmetry may be affected by exclusive vector meson productio

    The Q^2-Dependence of Nuclear Transparency for Exclusive ρ0\rho^0 Production

    Full text link
    Exclusive coherent and incoherent electroproduction of the ρ0\rho^0 meson from 1^1H and 14^{14}N targets has been studied at the HERMES experiment as a function of coherence length (lcl_c), corresponding to the lifetime of hadronic fluctuations of the virtual photon, and squared four-momentum of the virtual photon (Q2-Q^2). The ratio of 14^{14}N to 1^1H cross sections per nucleon, known as nuclear transparency, was found to increase (decrease) with increasing coherence length for coherent (incoherent) ρ0\rho^0 electroproduction. For fixed coherence length, a rise of nuclear transparency with Q2Q^2 is observed for both coherent and incoherent ρ0\rho^0 production, which is in agreement with theoretical calculations of color transparency.Comment: 5 pages, 4 figure

    Evidence for Quark-Hadron Duality in the Proton Spin Asymmetry A1A_1

    Full text link
    Spin-dependent lepton-nucleon scattering data have been used to investigate the validity of the concept of quark-hadron duality for the spin asymmetry A1A_1. Longitudinally polarised positrons were scattered off a longitudinally polarised hydrogen target for values of Q2Q^2 between 1.2 and 12 GeV2^2 and values of W2W^2 between 1 and 4 GeV2^2. The average double-spin asymmetry in the nucleon resonance region is found to agree with that measured in deep-inelastic scattering at the same values of the Bjorken scaling variable xx. This finding implies that the description of A1A_1 in terms of quark degrees of freedom is valid also in the nucleon resonance region for values of Q2Q^2 above 1.6 GeV2^2.Comment: 5 pages, 1 eps figure, table added, new references added, in print in Phys. Rev. Let

    Quark helicity distributions in the nucleon for up, down, and strange quarks from semi--inclusive deep--inelastic scattering

    Full text link
    Polarized deep--inelastic scattering data on longitudinally polarized hydrogen and deuterium targets have been used to determine double spin asymmetries of cross sections. Inclusive and semi--inclusive asymmetries for the production of positive and negative pions from hydrogen were obtained in a re--analysis of previously published data. Inclusive and semi--inclusive asymmetries for the production of negative and positive pions and kaons were measured on a polarized deuterium target. The separate helicity densities for the up and down quarks and the anti--up, anti--down, and strange sea quarks were computed from these asymmetries in a ``leading order'' QCD analysis. The polarization of the up--quark is positive and that of the down--quark is negative. All extracted sea quark polarizations are consistent with zero, and the light quark sea helicity densities are flavor symmetric within the experimental uncertainties. First and second moments of the extracted quark helicity densities in the measured range are consistent with fits of inclusive data

    Search for an exotic S=-2, Q=-2 baryon resonance at a mass near 1862 MeV in quasi-real photoproduction

    Full text link
    A search for an exotic baryon resonance with S=2,Q=2S=-2, Q=-2 has been performed in quasi-real photoproduction on a deuterium target through the decay channel ΞπΛππpπππ\Xi^- \pi^- \to \Lambda \pi^- \pi^- \to p \pi^- \pi^- \pi^-. No evidence for a previously reported Ξ(1860)\Xi^{--}(1860) resonance is found in the Ξπ\Xi^- \pi^-invariant mass spectrum. An upper limit for the photoproduction cross section of 2.1 nb is found at the 90% confidence level. The photoproduction cross section for the Ξ0(1530)\Xi^{0}(1530) is found to be between 9 and 24 nb

    Double hadron leptoproduction in the nuclear medium

    Full text link
    First measurement of double-hadron production in deep-inelastic scattering has been measured with the HERMES spectrometer at HERA using a 27.6 GeV positron beam with deuterium, nitrogen, krypton and xenon targets. The influence of the nuclear medium on the ratio of double-hadron to single-hadron yields has been investigated. Nuclear effects are clearly observed but with substantially smaller magnitude and reduced AA-dependence compared to previously measured single-hadron multiplicity ratios. The data are in fair agreement with models based on partonic or pre-hadronic energy loss, while they seem to rule out a pure absorptive treatment of the final state interactions. Thus, the double-hadron ratio provides an additional tool for studying modifications of hadronization in nuclear matter
    corecore