4 research outputs found

    Pan African strategy for the progressive control of peste des petits ruminants (Pan African ppr strategy)

    Get PDF
    Peste des petits ruminants (PPR) is a major constraint to the livelihoods and food security of small scale farmers. The epidemiology and biology of PPR virus has much in common with rinderpest virus (RP), an agent that has been globally eradicated. This document presents a strategy for the progressive control of PPR that builds upon the lessons learnt from rinderpest eradication. Progressive control relies upon a modular approach that consists of a series of self-sufficient phases each with its own set of sustainable results. Key intermediate results will be proven business models for sustainable PPR control service delivery and enhanced capacity of animal health institutions to target control services to critical control points. The program will foster an adaptive management approach that integrates learning approaches to drive animal health institutional innovation. The coordinated drive towards long term animal health goals will add value to on-going investments in infectious disease control

    The Economic Impact of Eradicating Peste des Petits Ruminants:A Benefit-Cost Analysis

    Get PDF
    Peste des petits ruminants (PPR) is an important cause of mortality and production loss among sheep and goats in the developing world. Despite control efforts in a number of countries, it has continued to spread across Africa and Asia, placing an increasing burden on the livelihoods of livestock keepers and on veterinary resources in affected countries. Given the similarities between PPR and rinderpest, and the lessons learned from the successful global eradication of rinderpest, the eradication of PPR seems appealing, both eliminating an important disease and improving the livelihoods of the poor in developing countries. We conducted a benefit-cost analysis to examine the conomic returns from a proposed programme for the global eradication of PPR. Based on our knowledge and experience, we developed the eradication strategy and estimated its costs. The benefits of the programme were determined from (i) the averted mortality costs, based on an analysis of the literature, (ii) the downstream impact of reduced mortality using a social accounting matrix, and (iii) the avoided control costs based on current levels of vaccination. The results of the benefit-cost analysis suggest strong economic returns from PPR eradication. Based on a 15-year programme with total discounted costs of US2.26billion,weestimatediscountedbenefitsofUS2.26 billion, we estimate discounted benefits of US76.5 billion, yielding a net benefit of US$74.2 billion. This suggests a benefit cost ratio of 33.8, and an internal rate of return (IRR) of 199%. As PPR mortality rates are highly variable in different populations, we conducted a sensitivity analysis based on lower and higher mortality scenarios. All the scenarios examined indicate that investment in PPR eradication would be highly beneficial economically. Furthermore, removing one of the major constraints to small ruminant production would be of considerable benefit to many of the most vulnerable communities in Africa and Asia

    Risk assessment and cost-effectiveness of animal healthcertification methods for livestock export in Somalia

    Get PDF
    AbstractLivestock export is vital to the Somali economy. To protect Somali livestock exports from costly import bans used to control the international spread of disease, better certification of livestock health status is required. We performed quantitative risk assessment and cost-effectiveness analysis on different health certification protocols for Somali livestock exports for six transboundary diseases.Examining stock at regional markets alone without port inspection and quarantine was inexpensive but was ineffective for all but contagious bovine pleuropneumonia, contagious caprine pleuropneumonia and peste des petits ruminants. While extended pre-export quarantine improves detection of infections that cause clinical disease, if biosecurity is suboptimal quarantine provides an opportunity for transmission and increased risk. Clinical examination, laboratory screening and vaccination of animals for key diseases before entry to the quarantine station reduced the risk of an exported animal being infected. If vaccination could be reliably performed weeks before arrival at quarantine its effect would be greatly enhanced.The optimal certification method depends on the disease. Laboratory diagnostic testing was particularly important for detecting infections with limited clinical signs in male animals (only males are exported); for Rift Valley fever (RVF) the probability of detection was 99% or 0% with and without testing.Based on our findings animal inspection and certification at regional markets combined with quarantine inspection and certification would reduce the risk of exporting infected animals and enhance disease control at the regional level. This is especially so for key priority diseases, that is RVF, foot-and-mouth disease and Brucellosis. Increased data collection and testing should be applied at point of production and export
    corecore