131 research outputs found

    Місце Редакційних комісій у підготовці проекту Селянської реформи 19 лютого 1861 р.

    Get PDF
    В статті проаналізовано структуру Редакційних комісій та процес розробки ними правової бази для проведення Селянської реформи 1861 р.В статье рассматривается структура Редакционных комиссий и процесс разработки ими правовой базы для проведения Крестьянской реформы 1861 г.In article to the analyze structure Redactions committee and legal regulations proceedings cultivate to be realization peasant reform 1861 year

    Genomic Investigation of Two Acinetobacter baumannii Outbreaks in a Veterinary Intensive Care Unit in The Netherlands

    Get PDF
    Acinetobacter baumannii is a nosocomial pathogen that frequently causes healthcare-acquired infections. The global spread of multidrug-resistant (MDR) strains with its ability to survive in the environment for extended periods imposes a pressing public health threat. Two MDR A. baumannii outbreaks occurred in 2012 and 2014 in a companion animal intensive care unit (caICU) in the Netherlands. Whole-genome sequencing (WGS) was performed on dog clinical isolates (n = 6), environmental isolates (n = 5), and human reference strains (n = 3) to investigate if the isolates of the two outbreaks were related. All clinical isolates shared identical resistance phenotypes displaying multidrug resistance. Multi-locus Sequence Typing (MLST) revealed that all clinical isolates belonged to sequence type ST2. The core genome MLST (cgMLST) results confirmed that the isolates of the two outbreaks were not related. Comparative genome analysis showed that the outbreak isolates contained different gene contents, including mobile genetic elements associated with antimicrobial resistance genes (ARGs). The time-measured phylogenetic reconstruction revealed that the outbreak isolates diverged approximately 30 years before 2014. Our study shows the importance of WGS analyses combined with molecular clock investigations to reduce transmission of MDR A. baumannii infections in companion animal clinics

    Quantifying Antimicrobial Use in Dutch Companion Animals

    Get PDF
    Antimicrobial resistance (AMR) is an increasing threat, both in human and in veterinary medicine. To reduce the selection and spread of AMR, antimicrobial use (AMU) should be optimized, also in companion animals. To be able to optimize AMU, a feasible method to quantify AMU and information on current AMU are needed. Therefore, a method to quantify AMU was developed, using the number of Defined Daily Doses Animal (DDDA). This method was used to explore applied antimicrobial classes and to identify differences in prescribing patterns in time and between veterinary clinics. Antimicrobial procurement data of the years 2012–2014 were collected retrospectively from 100 Dutch veterinary clinics providing care for companion animals. The mean number of DDDAs per clinic per year decreased significantly from 2012 to 2014. A shift in used classes of antimicrobials (AMs) was seen as well, with a significant decrease in use of third choice AMs (i.e., fluoroquinolones and third generation cephalosporins). Large differences in total AMU were seen between clinics ranging from 64-fold in 2012 to 20-fold in 2014. Despite the relative low and decreasing AMU in Dutch companion animal clinics during the study, the substantial differences in antimicrobial prescribing practices between clinics suggest that there is still room for quantitative and qualitative optimization of AMU

    Quantifying topical antimicrobial use before and during participation in an antimicrobial stewardship programme in Dutch companion animal clinics

    Get PDF
    The emergence of bacterial strains resistant to topical antimicrobials in both human and veterinary medicine has raised concerns over retaining the efficacy of these preparations. Yet, little information is available regarding the use of topical antimicrobials in either sector for planning targeted interventions. This study aims to quantify the use of topical antimicrobials in 44 Dutch companion animal clinics before and during their participation in an antimicrobial stewardship programme (ASP), to explore the effect of the intervention on topical antimicrobial use (AMU). Hence, prescription and clinic animal population data, collected from July 2012 until June 2018 were used. Specifically, the period from July 2012 until June 2015 was defined as pre-intervention period, whereas clinics started to participate in the ASP from March 2016 onwards. As quantification metric, the Defined Daily Dose for Animals (DDDA) was used and a mixed effect times series model with auto-regression was applied to monthly topical AMU data. The intervention effect was modelled using a step function with a change in (linear) time trend and clinic characteristics, as potential determinants of topical AMU, were assessed using a multivariable regression model. A seasonal pattern was identified, in the pre-intervention period, where topical AMU was highest in July-August and lowest in February-March. In addition, total topical AMU appeared to significantly decrease over time in the pre-intervention period and the proportion of dogs in the clinic was positively associated with topical AMU. The intervention effect was significant only for second line and for skin product AMU. This study demonstrates that during participation in an ASP, second line and skin product AMU decreased in Dutch companion animal clinics. Additionally, this study demonstrates the existence of a seasonal effect and a decrease in topical AMU over time already before introduction of a targeted intervention

    Molecular Characterization and Clinical Relevance of Taxonomic Reassignment of Staphylococcus schleiferi Subspecies into Two Separate Species, Staphylococcus schleiferi and Staphylococcus coagulans.

    Get PDF
    Staphylococcus schleiferi is an opportunistic pathogen in humans and dogs. Recent taxonomic reassignment of its subspecies (S. schleiferi subsp. schleiferi and S. schleiferi subsp. coagulans) into two separate species (S. schleiferi and S. coagulans) lacks supporting data for diagnostic implications and clinical relevance. We aimed to confirm the reclassification of S. schleiferi by using genomic and matrix-Assisted laser desorption ionization-time of flight (MALDI-TOF) data for a large set of isolates from humans and animals to investigate their molecular epidemiology and clinical relevance. Routine MALDI-TOF analysis and Illumina sequencing were performed on 165 S. schleiferi isolates from the Netherlands. With 33 publicly available genomes, the study included 198 genomes from 149 dogs, 34 humans, and 15 other sources. The Type Strain Genome Server was used to identify species in the genomes, and the MALDI-TOF MS database was extended to improve species differentiation. MALDI-TOF did not discriminate between S. schleiferi and S. coagulans. Genome phylogeny distinguished the two species in two monophyletic clusters. S. schleiferi isolates originated from humans, while S. coagulans isolates were found in animals and three human isolates clustering with the animal isolates. The sialidase B gene (nanB) was a unique marker gene for S. schleiferi, whereas the chrA gene was exclusive for S. coagulans. The mecA gene was exclusively detected in S. coagulans, as were the lnu(A), blaZ, erm(B/C), tet(O/M), and aac(69)-Aph(299) genes. The MALDI-TOF database extension did not improve differentiation between the two species. Even though our whole-genome sequencing- based approach showed clear differentiation between these two species, it remains critical to identify S. schleiferi and S. coagulans correctly in routine diagnostics. IMPORTANCE This study clearly shows that S. schleiferi is a concern in human hospital settings, whereas S. coagulans predominantly causes infections in animals. S. coagulans is more resistant to antibiotics and can sometimes transmit to humans via exposure to infected dogs. Even though genome-based methods can clearly differentiate the two species, current diagnostic methods used routinely in clinical microbiology laboratories cannot distinguish the two bacterial species

    Interplay of OATP1A/1B/2B1 uptake transporters and ABCB1 and ABCG2 efflux transporters in the handling of bilirubin and drugs

    Get PDF
    Transmembrane drug transporters can be important determinants of the pharmacokinetics, efficacy, and safety profiles of drugs. To investigate the potential cooperative and/or counteracting interplay of OATP1A/1B/2B1 uptake transporters and ABCB1 and ABCG2 efflux transporters in physiology and pharmacology, we generated a new mouse model (Bab12), deficient for Slco1a/1b, Slco2b1, Abcb1a/1b and Abcg2. Bab12 mice were viable and fertile. We compared wild-type, Slco1a/1b/2b1-/-, Abcb1a/1b;Abcg2-/- and Bab12 strains. Endogenous plasma conjugated bilirubin levels ranked as follows: wild-type = Abcb1a/1b;Abcg2-/- << Slco1a/1b/2b1-/- < Bab12 mice. Plasma levels of rosuvastatin and fexofenadine were elevated in Slco1a/1b/2b1-/- and Abcb1a/1b;Abcg2-/- mice compared to wild-type, and dramatically increased in Bab12 mice. Although systemic exposure of larotrectinib and repotrectinib was substantially increased in the separate multidrug transporter knockout strains, no additive effects were observed in the combination Bab12 mice. Significantly higher plasma exposure of fluvastatin and pravastatin was only found in Slco1a/1b/2b1-deficient mice. However, noticeable transport by Slco1a/1b/2b1 and Abcb1a/1b and Abcg2 across the BBB was observed for fluvastatin and pravastatin, respectively, by comparing Bab12 mice with Abcb1a/1b;Abcg2-/- or Slco1a/1b/2b1-/- mice. Quite varying behavior in plasma exposure of erlotinib and its metabolites was observed among these strains. Bab12 mice revealed that Abcb1a/1b and/or Abcg2 can contribute to conjugated bilirubin elimination when Slco1a/1b/2b1 are absent. Our results suggest that the interplay of Slco1a/1b/2b1, Abcb1a/1b, and Abcg2 could markedly affect the pharmacokinetics of some, but not all drugs and metabolites. The Bab12 mouse model will represent a useful tool for optimizing drug development and clinical application, including efficacy and safety

    Within-Household Transmission and Bacterial Diversity of Staphylococcus pseudintermedius.

    Get PDF
    Staphylococcus pseudintermedius can be transmitted between dogs and their owners and can cause opportunistic infections in humans. Whole genome sequencing was applied to identify the relatedness between isolates from human infections and isolates from dogs in the same households. Genome SNP diversity and distribution of plasmids and antimicrobial resistance genes identified related and unrelated isolates in both households. Our study shows that within-host bacterial diversity is present in S. pseudintermedius, demonstrating that multiple isolates from each host should preferably be sequenced to study transmission dynamics

    European multicenter study on antimicrobial resistance in bacteria isolated from companion animal urinary tract infections

    Get PDF
    BACKGROUND: There is a growing concern regarding the increase of antimicrobial resistant bacteria in companion animals. Yet, there are no studies comparing the resistance levels of these organisms in European countries. The aim of this study was to investigate geographical and temporal trends of antimicrobial resistant bacteria causing urinary tract infection (UTI) in companion animals in Europe. The antimicrobial susceptibility of 22 256 bacteria isolated from dogs and cats with UTI was determined. Samples were collected between 2008 and 2013 from 16 laboratories of 14 European countries. The prevalence of antimicrobial resistance of the most common bacteria was determined for each country individually in the years 2012-2013 and temporal trends of bacteria resistance were established by logistic regression. RESULTS: The aetiology of uropathogenic bacteria differed between dogs and cats. For all bacterial species, Southern countries generally presented higher levels of antimicrobial resistance compared to Northern countries. Multidrug-resistant Escherichia coli were found to be more prevalent in Southern countries. During the study period, the level of fluoroquinolone-resistant E. coli isolated in Belgium, Denmark, France and the Netherlands decreased significantly. A temporal increase in resistance to amoxicillin-clavulanate and gentamicin was observed among E. coli isolates from the Netherlands and Switzerland, respectively. Other country-specific temporal increases were observed for fluoroquinolone-resistant Proteus spp. isolated from companion animals from Belgium. CONCLUSIONS: This work brings new insights into the current status of antimicrobial resistance in bacteria isolated from companion animals with UTI in Europe and reinforces the need for strategies aiming to reduce resistance

    Natural deletion of mouse carboxylesterases Ces1c/d/e impacts drug metabolism and metabolic syndrome development

    Get PDF
    Mammalian carboxylesterase 1 enzymes can hydrolyze many xenobiotic chemicals and endogenous lipids. We here identified and characterized a mouse strain (FVB/NKI) in which three of the eight Ces1 genes were spontaneously deleted, removing Ces1c and Ces1e partly, and Ces1d entirely. We studied the impact of this Ces1c/d/e deficiency on drug and lipid metabolism and homeostasis. Ces1c/d/e-/- mice showed strongly impaired conversion of the anticancer prodrug irinotecan to its active metabolite SN-38 in plasma, spleen and lung. Plasma hydrolysis of the oral anticancer prodrug capecitabine to 5-DFCR was also profoundly reduced in Ces1c/d/e-/- mice. Our findings resolved previously unexplained FVB/NKI pharmacokinetic anomalies. On a medium-fat diet, Ces1c/d/e-/- female mice exhibited moderately higher body weight, mild inflammation in gonadal white adipose tissue (gWAT), and increased lipid load in brown adipose tissue (BAT). Ces1c/d/e-/- males showed more pronounced inflammation in gWAT and an increased lipid load in BAT. On a 5-week high-fat diet exposure, Ces1c/d/e deficiency predisposed to developing obesity, enlarged and fatty liver, glucose intolerance and insulin resistance, with severe inflammation in gWAT and increased lipid load in BAT. Hepatic proteomics analysis revealed that the acute phase response, involved in the dynamic cycle of immunometabolism, was activated in these Ces1c/d/e-/- mice. This may contribute to the obesity-related chronic inflammation and adverse metabolic disease in this strain. While Ces1c/d/e deficiency clearly exacerbated metabolic syndrome development, long-term (18-week) high-fat diet exposure overwhelmed many, albeit not all, observed phenotypic differences
    corecore