32 research outputs found

    Relationships between Circulating Urea Concentrations and Endometrial Function in Postpartum Dairy Cows

    Get PDF
    Both high and low circulating urea concentrations, a product of protein metabolism, are associated with decreased fertility in dairy cows through poorly defined mechanisms. The rate of involution and the endometrial ability to mount an adequate innate immune response after calving are both critical for subsequent fertility. Study 1 used microarray analysis to identify genes whose endometrial expression 2 weeks postpartum correlated significantly with the mean plasma urea per cow, ranging from 3.2 to 6.6 mmol/L. The biological functions of 781 mapped genes were analysed using Ingenuity Pathway Analysis. These were predominantly associated with tissue turnover (e.g., BRINP1, FOXG1), immune function (e.g., IL17RB, CRISPLD2), inflammation (e.g., C3, SERPINF1, SERPINF2) and lipid metabolism (e.g., SCAP, ACBD5, SLC10A). Study 2 investigated the relationship between urea concentration and expression of 6 candidate genes (S100A8, HSP5A, IGF1R, IL17RB, BRINP1, CRISPLD2) in bovine endometrial cell culture. These were treated with 0, 2.5, 5.0 or 7.5 mmol/L urea, equivalent to low, medium and high circulating values with or without challenge by bacterial lipopolysaccharide (LPS). LPS increased S100A8 expression as expected but urea treatment had no effect on expression of any tested gene. Examination of the genes/pathways involved suggests that plasma urea levels may reflect variations in lipid metabolism. Our results suggest that it is the effects of lipid metabolism rather than the urea concentration which probably alter the rate of involution and innate immune response, in turn influencing subsequent fertility

    Comparison of DNA extraction kits for detection of Burkholderia pseudomallei in spiked human whole blood using real-time PCR.

    Get PDF
    Burkholderia pseudomallei, the etiologic agent of melioidosis, is endemic in northern Australia and Southeast Asia and can cause severe septicemia that may lead to death in 20% to 50% of cases. Rapid detection of B. pseudomallei infection is crucial for timely treatment of septic patients. This study evaluated seven commercially available DNA extraction kits to determine the relative recovery of B. pseudomallei DNA from spiked EDTA-containing human whole blood. The evaluation included three manual kits: the QIAamp DNA Mini kit, the QIAamp DNA Blood Mini kit, and the High Pure PCR Template Preparation kit; and four automated systems: the MagNAPure LC using the DNA Isolation Kit I, the MagNAPure Compact using the Nucleic Acid Isolation Kit I, and the QIAcube using the QIAamp DNA Mini kit and the QIAamp DNA Blood Mini kit. Detection of B. pseudomallei DNA extracted by each kit was performed using the B. pseudomallei specific type III secretion real-time PCR (TTS1) assay. Crossing threshold (C T ) values were used to compare the limit of detection and reproducibility of each kit. This study also compared the DNA concentrations and DNA purity yielded for each kit. The following kits consistently yielded DNA that produced a detectable signal from blood spiked with 5.5×10(4) colony forming units per mL: the High Pure PCR Template Preparation, QIAamp DNA Mini, MagNA Pure Compact, and the QIAcube running the QIAamp DNA Mini and QIAamp DNA Blood Mini kits. The High Pure PCR Template Preparation kit yielded the lowest limit of detection with spiked blood, but when this kit was used with blood from patients with confirmed cases of melioidosis, the bacteria was not reliably detected indicating blood may not be an optimal specimen
    corecore