261 research outputs found

    Management of plant health risks associated with processing of plant-based wastes: A review

    Get PDF
    The rise in international trade of plants and plant products has increased the risk of introduction and spread of plant pathogens and pests. In addition, new risks are arising from the implementation of more environmentally friendly methods of biodegradable waste disposal, such as composting and anaerobic digestion. As these disposal methods do not involve sterilisation, there is good evidence that certain plant pathogens and pests can survive these processes. The temperature/time profile of the disposal process is the most significant and easily defined factor in controlling plant pathogens and pests. In this review, the current evidence for temperature/time effects on plant pathogens and pests is summarised. The advantages and disadvantages of direct and indirect process validation for the verification of composting processes, to determine their efficacy in destroying plant pathogens and pests in biowaste, are discussed. The availability of detection technology and its appropriateness for assessing the survival of quarantine organisms is also reviewed

    A putative genomic island, PGI-1, in Ralstonia solanacearum biovar 2 revealed by subtractive hybridization

    Get PDF
    Ralstonia solanacearum biovar 2, a key bacterial pathogen of potato, has recently established in temperate climate waters. On the basis of isolates obtained from diseased (potato) plants, its genome has been assumed to be virtually clonal, but information on environmental isolates has been lacking. Based on differences in pulsed-field gel electrophoresis patterns, we compared the genomes of two biovar 2 strains with different life histories. Thus, genomic DNA of the novel environmental strain KZR-5 (The Netherlands) was compared to that of reference potato strain 715 (Bangladesh) by suppressive subtractive hybridization. Various strain-specific sequences were found, all being homologous to those found in the genome of reference potato strain 1609. Approximately 20% of these were related to genes involved in recombinational processes. We found a deletion of a 17.6-Kb region, denoted as a putative genomic island PGI-1, in environmental strain KZR-5. The deleted region was, at both extremes, flanked by a composite of two insertion sequence (IS) elements, identified as ISRso2 and ISRso3. The PGI-1 region contained open reading frames that putatively encoded a (p)ppGpp synthetase, a transporter protein, a transcriptional regulator, a cellobiohydrolase, a site-specific integrase/recombinase, a phage-related protein and seven hypothetical proteins. As yet, no phenotype could be assigned to the loss of PGI-1. The ecological behavior of strain KZR-5 was compared to that of reference strain 715. Strain KZR-5 showed enhanced tolerance to 4°C as compared to the reference strain, but was not affected in its virulence on tomato

    Sequential disruptions to inflammatory and angiogenic pathways and risk of spontaneous preterm birth in Malawian women

    Get PDF
    Preterm birth is a leading cause of death in children under five years of age. We hypothesized that sequential disruptions to inflammatory and angiogenic pathways during pregnancy increase the risk of placental insufficiency and spontaneous preterm labour and delivery. We conducted a secondary analysis of inflammatory and angiogenic analytes measured in plasma samples collected across pregnancy from 1462 Malawian women. Women with concentrations of the inflammatory markers sTNFR2, CHI3L1, and IL18BP in the highest quartile before 24 weeks gestation and women with anti-angiogenic factors sEndoglin and sFlt-1/PlGF ratio in the highest quartile at 28-33 weeks gestation, had an increased relative risk of preterm birth. Mediation analysis further supported a potential causal link between early inflammation, subsequent angiogenic dysregulation detrimnental to placental vascular development, and earlier gestational age at delivery. Interventions designed to reduce the burden of preterm birth may need to be implemented before 24 weeks of gestation

    Intestinal barrier disruption with Plasmodium falciparum infection in pregnancy and risk of preterm birth: a cohort study

    Get PDF
    Malaria in early pregnancy is a risk factor for preterm birth and is associated with sustained inflammation and dysregulated angiogenesis across gestation. This study investigated whether malaria is associated with increased gut leak and whether this contributes to systemic inflammation, altered angiogenesis, and preterm birth. We quantified plasma concentrations of gut leak markers, soluble CD14 (sCD14) and lipopolysaccharide binding protein (LBP) from 1339 HIV-negative pregnant Malawians at <24 weeks gestational age. We assessed the relationship of sCD14 and LBP concentrations with markers of inflammation, angiogenesis, and L-arginine bioavailability and compared them between participants with and without malaria, and with and without preterm birth. Plasma concentrations of sCD14 and LBP were significantly higher in participants with malaria and were associated with parasite burden (p <0.0001, both analyses and analytes). The odds ratio for preterm birth associated with one log sCD14 was 2.67 (1.33 to 5.35, p = 0.006) and 1.63 (1.07-2.47, p = 0.023) for LBP. Both gut leak analytes were positively associated with increases in proinflammatory cytokines CRP, sTNFR2, IL18-BP, CHI3L1 and Angptl3 (p <0.05, all analytes) and sCD14 was significantly associated with angiogenic proteins Angpt-2, sENG and the sFLT:PlGF ratio (p <0.05, all analytes). sCD14 was negatively associated with L-arginine bioavailability (p <0.001). Malaria in early pregnancy is associated with intestinal barrier dysfunction, which is linked to an increased risk of preterm birth. Open Philanthropy, Canadian Institutes of Health Research, Canada Research Chair program, European and Developing Countries Clinical Trials Partnership, Bill & Melinda Gates Foundation

    Evolutionary genetics of immunological supertypes reveals two faces of the Red Queen

    Get PDF
    Red Queen host-parasite co-evolution can drive adaptations of immune-genes by positive selection that erodes genetic variation (Red Queen Arms Race), or result in a balanced polymorphism (Red Queen Dynamics) and the long-term preservation of genetic variation (trans-species polymorphism). These two Red Queen processes are opposite extremes of the co-evolutionary spectrum. Here we show that both Red Queen processes can operate simultaneously, analyzing the Major Histocompatibility Complex (MHC) in guppies (Poecilia reticulata and P. obscura), and swamp guppies (Micropoecilia picta). Sub-functionalization of MHC alleles into “supertypes” explains how polymorphisms persist during rapid host-parasite co-evolution. Simulations show the maintenance of supertypes as balanced polymorphisms, consistent with Red Queen Dynamics, whereas alleles within supertypes are subject to positive selection in a Red Queen Arms Race. Building on the Divergent Allele Advantage hypothesis, we show that functional aspects of allelic diversity help to elucidate the evolution of polymorphic genes involved in Red Queen co-evolution

    The Angiopoietin-Tie2 axis contributes to placental vascular disruption and adverse birth outcomes in malaria in pregnancy

    Get PDF
    BACKGROUND Malaria during pregnancy is a major contributor to the global burden of adverse birth outcomes including fetal growth restriction, preterm birth, and fetal loss. Recent evidence supports a role for angiogenic dysregulation and perturbations to placental vascular development in the pathobiology of malaria in pregnancy. The Angiopoietin-Tie2 axis is critical for placental vascularization and remodeling. We hypothesized that disruption of this pathway would contribute to malaria-induced adverse birth outcomes. METHODS Using samples from a previously conducted prospective cohort study of pregnant women in Malawi, we measured circulating levels of angiopoietin-1 (Angpt-1) and Angpt-2 by Luminex (n=1392). We used a preclinical model of malaria in pregnancy (Plasmodium berghei ANKA [PbA] in pregnant BALB/c mice), genetic disruption of Angpt-1 (Angpt1 mice), and micro-CT analysis of placental vasculature to test the hypothesis that disruptions to the Angpt-Tie2 axis by malaria during pregnancy would result in aberrant placental vasculature and adverse birth outcomes. FINDINGS Decreased circulating levels of Angpt-1 and an increased ratio of Angpt-2/Angpt-1 across pregnancy were associated with malaria in pregnancy. In the preclinical model, PbA infection recapitulated disruptions to the Angiopoietin-Tie2 axis resulting in reduced fetal growth and viability. Malaria decreased placental Angpt-1 and Tie2 expression and acted synergistically with reduced Angpt-1 in heterozygous dams (Angpt1), to worsen birth outcomes by impeding vascular remodeling required for placental function. INTERPRETATION Collectively, these data support a mechanistic role for the Angpt-Tie2 axis in malaria in pregnancy, including a potential protective role for Angpt-1 in mitigating infection-associated adverse birth outcomes. FUNDING This work was supported by the Canadian Institutes of Health Research (CIHR), Canada Research Chair, and Toronto General Research Institute Postdoctoral Fellowship Award. The parent trial was supported by the European & Developing Countries Clinical Trials Partnership and the Malaria in Pregnancy Consortium, which was funded by the Bill & Melinda Gates Foundation. The funders had no role in design, analysis, or reporting of these studies
    corecore