41 research outputs found

    The Resource Prospector Neutron Spectrometer System: RP's Bloodhound

    Get PDF
    The primary goal of the Resource Prospector Neutron Spectrometer System (NSS) is to locate and characterize hydrogen-bearing volatile deposits, especially subsurface ice, that may exist at the lunar poles. A key objective is to detect water-equivalent hydrogen concentrations of 0.5 wt% or greater while on a moving rover. A second objective is to determine approximate burial depth of enhanced hydrogen-bearing materials up to 1 meter below otherwise dry regolith. The instrument will be carried aboard a landed mobility system at the lunar poles. The instrument operates by measuring the changes in the leakage flux of low energy neutrons out of the regolith. These neutrons are produced by galactic cosmic rays, which are so energetic that they shatter the nuclei in surface materials. The neutrons interact with other nuclei and lose energy, becoming thermalized in the process. Hydrogen is most efficient at thermalizing neutrons owing to protons' similar mass - statistically, neutrons lose half their energy per collision with protons. With hydrogen in the soil, leakage fluxes of neutrons in the 0.5 eV to 500 keV energy range are reduced. A concentration of only1-2 wt% water-equivalent hydrogen results in a decrease in epithermal leakage flux of a factor of two. The leakage flux of thermal neutrons, from 0 to 0.5 eV in energy, can either increase or decrease depending on the hydrogen abundance and stratigraphy. As with the highly successful Lunar Prospector Neutron Spectrometer, the RP NSS detects both thermal and epithermal neutrons by using two helium-3 gas proportional counters, one covered by cadmium and the other uncovered. The former detects only epithermal neutrons with energies above approximately 0.5 eV, the latter detects both thermal (less than 0.5 eV) and epithermal energies (greater than 0.5 eV). When a neutron enters the detector tube and interacts with a helium-3 nucleus, the resulting reaction produces an energetic proton and triton that ionize the gas. The resulting electrons are accelerated toward a high-voltage anode and cascade, amplifying the net charge, which is collected at the anode. The number of electrons produced is proportional to the energy that the triton and proton deposit in the gas. A charge sensitive pre-amplifier converts the total charge to a step voltage output. A shaper amplifier then shapes this step into a uni-polar waveform with peaking time appropriate for the detection depending on the event rate. The integrated shaped waveform, representing the deposited triton/proton energy, is then measured. A histogram, or pulse height analysis, is performed to record the main capture peak and wall effect pulses. A threshold for detection is also required to limit the low amplitude counting rate such as noise floor. The system electronics consists of 2 modules - the Sensor Module (SM) front-end and the Data Processing Module (DPM) back-end circuits. SM is designed as a light-weight and low power front-end housing the two helium-3 proportional counter detectors, preamp and HVPS. It is mounted external to the rover body to detect the thermalized neutron flux with a minimum of host background. The DPM is located inside the rover; it digitizes the SM signals, performs pulse height analysis and accumulates the count rate for each spectral channel. The DPM controls high voltage and thresholding, and sends the science data to the host craft via an RS422 serial asynchronous protocol. The payload host provides all thermal management and control for the SM and DPM

    Prospecting for Polar Volatiles: Results from the Resolve Field

    Get PDF
    Both the Moon and Mercury evidently host ice and other volatile compounds in cold traps at the planets poles. Determining the form, spatial distribution, and abundance of these volatiles at the lunar poles can help us understand how and when they were delivered and emplaced. This bears directly on the delivery of water and prebiotic compounds to the inner planets over the solar system s history, and also informs plans for utilizing the volatiles as resources for sustained human exploration as well as the commercial development of space. Temperature models and orbital data suggest near-surface volatile concentrations may exist at polar locations not strictly in permanent shadow. Remote operation of a robotic lunar rover mission for the 7-10 days of available sunlight would permit key questions to be answered. But such a short, quick-tempo mission has unique challenges and requires a new concept of operations. Both science and rover operations decisionmaking must be done in real time, requiring immediate situational awareness, data analysis, and decision support tools

    Equatorial locations of water on Mars: Improved resolution maps based on Mars Odyssey Neutron Spectrometer data

    Get PDF
    We present a map of the near subsurface hydrogen distribution on Mars, based on epithermal neutron data from the Mars Odyssey Neutron Spectrometer. The map’s spatial resolution is approximately improved two-fold via a new form of the pixon image reconstruction technique. We discover hydrogen-rich mineralogy far from the poles, including  ∼10 wt.% water equivalent hydrogen (WEH) on the flanks of the Tharsis Montes and  >40 wt.% WEH at the Medusae Fossae Formation (MFF). The high WEH abundance at the MFF implies the presence of bulk water ice. This supports the hypothesis of recent periods of high orbital obliquity during which water ice was stable on the surface. We find the young undivided channel system material in southern Elysium Planitia to be distinct from its surroundings and exceptionally dry; there is no evidence of hydration at the location in Elysium Planitia suggested to contain a buried water ice sea. Finally, we find that the sites of recurring slope lineae (RSL) do not correlate with subsurface hydration. This implies that RSL are not fed by large, near-subsurface aquifers, but are instead the result of either small ( < 120 km diameter) aquifers, deliquescence of perchlorate and chlorate salts or dry, granular flows

    Online Multi-Modal Learning and Adaptive Information Trajectory Planning for Autonomous Exploration

    Get PDF
    In robotic information gathering missions, scientists are typically interested in understanding variables which require proxy measurements from specialized sensor suites to estimate. However, energy and time constraints limit how often these sensors can be used in a mission. Robots are also equipped with cheaper to use navigation sensors such as cameras. In this paper, we explore a challenging planning problem in which a robot is required to learn about a scientific variable of interest in an initially unknown environment by planning informative paths and deciding when and where to use its sensors. To tackle this we present two innovations: a Bayesian generative model framework to automatically learn correlations between expensive science sensors and cheaper to use navigation sensors online, and a sampling based approach to plan for multiple sensors while handling long horizons and budget constraints. Our approach does not grow in complexity with data and is anytime making it highly applicable to field robotics. We tested our approach extensively in simulation and validated it with real data collected during the 2014 Mojave Volatiles Prospector Mission. Our planning algorithm performs statistically significantly better than myopic approaches and at least as well as a coverage-based algorithm in an initially unknown environment while having added advantages of being able to exploit prior knowledge and handle other intricacies of the real world without further algorithmic modifications

    Two-Dimensional Distribution of Volatiles in the Lunar Regolith from Space Weathering Simulations

    Get PDF
    We present simulations of space weathering effects on ice deposits in regions of permanent shadow on the Moon. These Monte Carlo simulations follow the effects of space weathering processes on the distribution of the volatiles over time. The model output constrains the coherence of volatile deposits with depth, lateral separation, and time. The results suggest that ice sheets become broken and buried with time. As impacts begin to puncture an initially coherent surficial ice sheet, small areas with a deficit of ice compared to surrounding areas are formed first. As time progresses, holes become prevalent and the anomalous regions are local enhancements of ice concentration in a volume. The 3-D distribution is also heterogeneous because the ice is buried to varying depths in different locations. Analysis of the coherence of ice on 10 cm scales predicts that putative ice sheets in anomalous radar craters are 1000 Myr old. For future in situ analysis of cold trap volatiles, a horizontal range of 10 m is sufficient to acquire surface-based measurements of heterogeneously distributed ice. These results also support previous analyses that Mercury's cold traps are young

    First Results from the Mojave Volatiles Prospector (MVP) Field Campaign, a Lunar Polar Rover Mission Analog

    Get PDF
    The Mojave Volatiles Prospector (MVP) project is a science-driven field program with the goal to produce critical knowledge for conducting robotic exploration of the Moon. MVP will feed science, payload, and operational lessons learned to the development of a real-time, short-duration lunar polar volatiles prospecting mission. MVP achieves these goals through a simulated lunar rover mission to investigate the composition and distribution of surface and subsurface volatiles in a natural and a priori unknown environment within the Mojave Desert, improving our understanding of how to find, characterize, and access volatiles on the Moon. The MVP field site is the Mojave Desert, selected for its low, naturally occurring water abundance. The Mojave typically has on the order of 2-6% water, making it a suitable lunar analog for this field test. MVP uses the Near Infrared and Visible Spectrometer Subsystem (NIRVSS), Neutron Spectrometer Subsystem (NSS), and a downward facing GroundCam camera on the KREX-2 rover to investigate the relationship between the distribution of volatiles and soil crust variation. Through this investigation, we mature robotic in situ instruments and concepts of instrument operations, improve ground software tools for real time science, and carry out publishable research on the water cycle and its connection to geomorphology and mineralogy in desert environments. A lunar polar rover mission is unlike prior space missions and requires a new concept of operations. The rover must navigate 3-5 km of terrain and examine multiple sites in in just ~6 days. Operational decisions must be made in real time, requiring constant situational awareness, data analysis and rapid turnaround decision support tools. This presentation will focus on the first science results and operational architecture findings from the MVP field deployment relevant to a lunar polar rover mission

    Observations of Lunar Swirls by the Diviner Lunar Radiometer Experiment

    Get PDF
    The presence of anomalous, high albedo markings on the lunar surface has been known since the Apollo era. These features, collectively known as lunar swirls, occur on both the mare and highlands. Some swirls are associated with the antipodes of major impact basins, while all are associated with magnetic field anomalies of varying strength. Three mechanisms have been proposed for the formation of the swirls: (1) solar wind standoff due to the presence of magnetic fields, (2) micrometeoroid or comet swarms impacting and disturbing the lunar surface, revealing unweathered regolith, and (3) transport and deposition of fine-grained feldspathic material. Diviner s unique capabilities to determine silicate composition and degree of space weathering of the lunar surface, in addition to its capabilities to determine thermophysical properties from night-time temperature measurements, make it an ideal instrument to examine the swirls and help differentiate among the three proposed formation mechanisms

    LADEE UVS Observations of Atoms and Dust in the Lunar Tail

    Get PDF
    The Lunar Atmosphere and Dust Environment Explorer (LADEE) was a lunar orbiter launched in September 2013 that investigated the composition and temporal variation of the tenuous lunar exosphere and dust environment. A major goal of the mission was to characterize the dust exosphere prior to future lunar exploration activities, which may alter the lunar environment. The Ultraviolet/Visible Spectrometer (UVS) onboard LADEE addresses this goal, utilizing two sets of optics: a limbviewing telescope, and a solar-viewing telescope. We report on spectroscopic (approximately 280 - 820 nm) observations viewing down the lunar wake or along the 'lunar tail' from lunar orbit. Prior groundbased studies have observed the emission from neutral sodium atoms extended along the lunar tail, so often this region is referred to as the lunar sodium tail. UVS measurements were made on the dark side of the moon, with the UVS limb-viewing telescope pointed outward in the direction of the Moon's wake (almost anti-sun), during different lunar phases. These UVS observation activities sample a long column and allow the characterization of scattered light from dust and emission lines from atoms in the lunar tail. Observations in this UVS configuration show the largest excess of scattered blue light in our data set, indicative of the presence of small dust grains in the tail. Once lofted, nanoparticles may become charged and picked up by the solar wind, similar to the phenomena witnessed above Enceladus's northern hemisphere or by the STEREO/WAVES instrument while close to Earth's orbit. The UVS data show that small dust grains as well as atoms become entrained in the lunar tail

    LADEE UVS (UltraViolet Visible Spectrometer) and the Search for Lunar Exospheric Dust: A Detailed Spectral Analysis

    Get PDF
    The Lunar Atmosphere and Dust Environment Explorer (LADEE) executed science observations in lunar orbit spanning 2013-Oct-16- 2014-04-18 UT. LADEE's Ultraviolet/Visible Spectrometer (UVS) studies the composition and temporal variations of the tenuous lunar exosphere and dust environment, utilizing two sets of optics: a limb-viewing telescope, and a solar-viewer. The limb-viewing telescope observes illuminated dust and emitting gas species while the Sun is just behind the lunar limb. The solar viewer, with its diffuser, allows UVS to also stare directly at the solar disk as it approaches the limb, sampling progressively lower exosphere altitudes. Solar viewer "Occultation" activities occur at the lunar sunrise limb, as the LADEE spacecraft passes into the lunar night side, facing the Sun (the spacecraft orbit is near-equatorial retrograde). A loss of transmission of sunlight occurs by the occultation of dust grains along the line-of-sight. So-called "Inertial Limb" activities have the limb-viewing telescope pointed at the lit exosphere just after the Sun has set. Inertial Limb activities follow a similar progression of diminishing sampling altitudes but hold the solar elongation angle constant so the zodiacal light contribution remains constant while seeking to observe the weak lunar horizon glow. On the dark side of the moon, "Sodium Tail" activities pointed the limb-viewing telescope in the direction of the Moon's sodium tail (similar to anti-sunward), during different lunar phases. Of the UVS data sets, these show the largest excess of scattered blue light, indicative of the presence of small (approximately 100 nm) dust grains in the tail. Correlations are sought between dust in the sodium tail and meteor streams and magnetotail crossings to investigate impact- versus electrostatic-lofting. Once lofted, nanoparticles can become charged and picked up by the solar wind. The LADEE UVS Occultation, Inertial Limb, and Sodium Tail spectral datasets provide evidence of a lunar dust exosphere
    corecore