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Abstract In robotic information gathering missions, scientists are typically inter-
ested in understanding variables which require proxy measurements from special-
ized sensor suites to estimate. However, energy and time constraints limit how often
these sensors can be used in a mission. Robots are also equipped with cheaper to use
navigation sensors such as cameras. In this paper, we explore a challenging planning
problem in which a robot is required to learn about a scientific variable of interest in
an initially unknown environment by planning informative paths and deciding when
and where to use its sensors. To tackle this we present two innovations: a Bayesian
generative model framework to automatically learn correlations between expensive
science sensors and cheaper to use navigation sensors online, and a sampling based
approach to plan for multiple sensors while handling long horizons and budget con-
straints. Our approach does not grow in complexity with data and is anytime making
it highly applicable to field robotics. We tested our approach extensively in simu-
lation and validated it with real data collected during the 2014 Mojave Volatiles
Prospector Mission. Our planning algorithm performs statistically significantly bet-
ter than myopic approaches and at least as well as a coverage-based algorithm in an
initially unknown environment while having added advantages of being able to ex-
ploit prior knowledge and handle other intricacies of the real world without further
algorithmic modifications.
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Fig. 1: KRex2 in the Mojave Desert. KRex carried a Neutron Spectrometer Sys-
tem(NSS) and a Near Infrared Visible Light Reflectance Spectrometer (NIRVIS).
The robot autonomously drove and localized itself at the command of remote scien-
tists. The data that it collected was georegistered and presented to the backroom of
a team of 30 scientists who adapted their plans in response to data updates.

1 Introduction

In robotic information gathering missions, scientists are often interested in variables
or phenomenon which cannot directly be measured but must be observed through
correlated proxy measurements. Examples include mapping water abundance in re-
mote environments by measuring neutron flux[1], inferring the health of aquatic
life by monitoring chemical concentrations [8], and searching for evidence of life
on Mars through biomarkers [16]. These proxy measurements often requires spe-
cialized ‘science’ sensor suites such as spectrometers, subsurface drills and sample
processing equipment. These are typically either energetically expensive to use, re-
quire the robot to remain stationary or have finite capacity limiting how often they
can be used given energy constraints and short life spans of many robotic missions.

Robots are also equipped with sensors that are inexpensive in time and energy,
such as navigation sensors like cameras or LIDAR. Learning relationships between
underlying scientific phenomena of interest and the different inexpensive sensors
on-board will allow scientists to better understand phenomena without incurring
the prohibitive cost of exhaustively sampling large environments with specialized
sensors. Given the locations to be explored are often remote and mostly unknown,
this relationship should be learned or updated in situ. Robots that can predict latent
science variables at a reduced cost will be able to plan paths and sensor usage more
effectively which increases science return, mission productivity and allows the robot
to operate at higher levels of autonomy.
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In this paper we formulate a sensor planning problem in which a robot equipped
with multiple sensors has to learn about a latent scientific variable. The robot must
plan paths on a graph representation of the environment and decide when and where
to use each sensor, constrained by a sensing budget and a goal position. Sensor cor-
relations are modeled by a Bayesian network(BN) generative model, the parameters
of which are learned online as observations are made. Reasoning about the net-
work to plan informative sensing sequences is, however, a challenging optimization
problem. We calculate approximate solutions by applying Monte Carlo Tree Search
(MCTS) techniques [5]. The combination of BNs and MCTS allows the robot to
learn and update sensor correlations recursively in a manner which is constant in
the number of samples collected and plan informative sensing sequences in an any-
time manner. These two properties make our approach highly applicable for online
use in robots with limited computational capabilities.

We apply our general approach to a scenario modeled on the Mojave Volatiles
Prospector (MVP) project, conducted by NASA Ames Research Center in the Mo-
jave Desert in 2014 [11]. The purpose of the MVP project was to test high tempo
remote operations while attempting to estimate abundance of subsurface water.
KRex2, the robot used in MVP and pictured in Fig. 1, was equipped with several
sensors including a downwards facing camera and a Neutron Spectrometer (NSS)
which produces measurements that can be correlated with the abundance of subsur-
face water. The NSS has a small field of view and measurement requires the robot
to drive slowly to avoid spatial blurring of readings. NSS is an inexpensive sensor
to use, but we use it as a stand-in for more involved subsurface sampling operations.

At the end of the MVP project, the sensor data was analyzed and it was de-
termined that there was a relationship between the visual properties of terrain and
the corresponding NSS readings [9]. If this relationship was learned automatically
during the mission, scientists could have made more informed decisions regarding
where to direct the robot and deploy sensors to maximize understanding of subsur-
face water distribution. The MVP project was a precursor to the planned Resource
Prospector project which aims to deploy a robot with a similar sensor suite on the
moon and map the abundance of surface volatiles [1, 11]. Learning sensor correla-
tions online will make the science return of the RP mission much greater, a signifi-
cant boon given the project is limited to one lunar day of operations.

We illustrate our key ideas both in simulation and with real data acquired from the
MVP project. There the robot deduces the water abundance in an environment by
autonomously planning paths, sensor placements and simultaneously learning the
relationship between visual properties of terrain and NSS readings. We demonstrate
that our approach is statistically significantly better than myopic approaches and
comparable to the non-adaptive coverage based planners in initially unknown envi-
ronments, a result consistent with [13]. Our approach has the added benefit of being
generalizable to an arbitrary number of sensors and able to exploit prior knowledge
when it’s available without further algorithmic modifications.
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2 Related Work

Robotic exploration and sensor planning to gain information about the world is
an informative path planning problem. Greedy approaches are effective and offer
performance guarantees when the problem is submodular [15]. Unfortunately, this
property often broken with path dependent rewards often present in field environ-
ments. Branch and bound techniques which prune suboptimal branches early in the
tree search have shown promise [3, 12] but efficiently calculating tight bounds in
problems with unknown environments and multiple sensors becomes non-trivial.
There are also various heuristic approaches but they either do not generalize to un-
known environments or cannot plan for multiple sensors without significant algo-
rithmic modifications.

In field applications of information gathering, several approaches have been pro-
posed. Thompson et al. used a greedy algorithm to design maximally informative
trajectories for constructing spatial maps of multi-spectral data [18]. Wettergreen et
al. extended this in [19] to design trajectories that explore regions of orbital maps
that cannot be explained with previous observations – actively solving the spectral
unmixing problem. Girdhar et al. [10] used a database of observations to detect
anomalous data. Similar to our approach, a generative model was learned online by
directing the robot towards these anomalies. However these approaches used very
short planning horizons and do not make decisions about using expensive secondary
sensors to gain information.

Tabib et al. [17] explored a search and rescue application where their robot plans
trajectories that maximize the information gained by two different sensors which
measure the geometry and temperature of the environment. It is assumed that the
instruments are constantly collecting data, instead of actively switched on which
simplifies the planning problem. Furthermore, it is assumed that the two sensors
are conditionally independent while in our problem, being able to learn and exploit
relationships between sensing modalities is fundamental.

Arora et al. used a Bayesian network to model relationships between sensing
modalities and the phenomena they are trying to measure [2]. The work assumes
the relationship between sensors is known a priori while in this paper we learn
this relationship online. Furthermore, the work uses a greedy planner while here we
explore long horizon planning and incorporate goal constraints.

Das et al. [7] builds a map of underwater plankton abundance by planning the de-
ployment of a low cost sensor which measures environmental parameters and an ex-
pensive ‘plankton’ sensor. To achieve this, two Gaussian Processes (GPs) are used.
The first maps spatial co-ordinates to environmental parameters while the second
maps environmental parameters to plankton abundance. The robot samples from lo-
cations with high plankton uncertainty, where the uncertainty is propagated through
both GPs via the Unscented Transform. However the computational complexity of
GPs grows with the number of collected samples. Using this framework in online
adaptive planning applications like ours is not amenable to long-term operation with
the limited computing resources in field robots.
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3 Problem Setup

Like MVP we consider a ground vehicle exploring an open environment searching
for subsurface water abundance. The operating environment is discretized into a grid
where the robot is required to estimate the abundance of water, W , in each grid cell,
n. While the robot can be equipped with an arbitrary number of sensors, for ease of
illustration, we consider the case with two sensors: a camera which can be used to
classify terrain in a cell and a neutron spectrometer (NSS) which returns counts that
are positively correlated with water abundance.

The robot plans action sequences, a1:L, to maximize the expected information
gained, EI, on the water distribution in each cell. The camera always takes mea-
surements but the robot must actively decide when to use the NSS. The robot must
also reach a goal position, xgoal , before it exhausts the operating (motion and sens-
ing) budget of the mission, B. The optimization objective is:

a∗1:L = argmax
a1:L∈A

EI(a1:L)

s.t. cost(a1:L)≤ B

s.t. xend(xstart ,a1:L) = xgoal

(1)

A is the action space of the robot which contains the movements the robot can
take in the next time step and the decision of whether on not to use the NSS. We
define the action space as the four cardinal directions but any motion models can
be used here. Similarly, any general cost function can be used and we define ours
in Sec. 5. The expected information gain is given by Equation 2 where H(·) is the
Shannon entropy, Wn is the water abundance in a cell n and N is the total number of
cells in the environment.

EI(a1:L) =
N

∑
n=1

[H(Wn)−H(Wn|a1:L)] (2)

Each action produces some stochastic observation Zs which reveals information
about the water distribution, where s ∈ {Image,NSS}. The expected information
gain of a sensing sequence is computed over all possible observations that can result
from each sensing action in the sequence:

EI(a1:L) =
N

∑
n=1

[
H(Wn)−∑

Z1:L

H(Wn|Z1:L)P(Z1:L|a1:L)

]
(3)

P(Z1:L|a1:L) is the sensor noise model while the H(Wn|Z1:L) term is a function of
the robot’s belief on the environment and the sensor correlations.
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4 Approach

The overall proposed architecture is shown in Figure 2. Instead of specifying paths
and sensing waypoints directly, our framework allows scientists to simply provide
a goal position constraint, sensing budget and the variable they are interested in
learning about- a useful capability in remote environments with communication
constraints. We now describe the two main components of our approach: a gen-
erative model for learning sensor correlations online and an anytime, approximate
path planner (MCTS) to find approximate solutions to Equation 1.

Scientist

Robot’s internal belief

Planner Sensor correlation model

Navigation 
and Control

Environment

Budget
Goal position
Variable of interest

Sensor 
observations

Next waypoint
Sensor choice

Take 
observation

Update belief
Belief of 

environment

Robot
Information on 
variable of interest

Fig. 2: The overall systems architecture for our approach

4.1 Modeling and Learning Sensor Correlations

Loosely inspired from topic modeling literature [4], we structure the dependencies
between the NSS observations and the camera with the generative model shown in
Fig. 3. The NSS observes the water distribution W in a cell n through observations
ZNSS. The camera observation is denoted by ZI while T is the class of terrain. A con-
ditional probabilistic relationship between terrain and water classes is parametrized
by θ and hyperparameters α which are learned during the mission as data is col-
lected. We assume all nodes are discrete variables but the observation nodes can
directly handle continuous data as well. The probabilistic mapping from T and W
nodes to their corresponding observation nodes is deduced from the sensor/classifier
model the robot is using. Unsupervised dimensionality reduction techniques can
also be applied here.

In this section we derive the Bayesian update for the beliefs of nodes Wn, Tn and
θ as observations are made in a cell. We define:
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Fig. 3 Bayesian generative
sensor correlation model. The
model can be extended to an
arbitrary number of sensors
and adapted to incorporate
sensor dependencies that
come with specific applica-
tions

αθWn

ZNSSn

Tn

ZIn

N

P(W |T = t)∼Categorical(θt) (4)

θt ∼ Dirichlet(αt) (5)

θ = [θ1,θ2..θT ] (6)

By applying Bayes Theorem and exploiting conditional dependencies in the
Bayesian network, the beliefs on the water abundance and terrain types can be up-
dated using Equation 7 where η is the normalization constant. For compactness, we
drop the subscript n from the terms Wn and Tn.

P(W |ZI ,ZNSS) = ηP(ZNSS|W )P(W |ZI)

= ηP(ZNSS|W )∑
T

P(T |ZI)P(W |ZI ,T )

= ηP(ZNSS|W )∑
T

P(T )P(ZI |T )P(W |ZI ,T )

= ηP(ZNSS|W )∑
T

P(T )P(ZI |T )
∫

θ

P(W |T,θ)P(θ)dθ

= ηP(ZNSS|W )∑
T

P(T )P(ZI |T )
∫

θ

θP(θ)dθ

= ηP(ZNSS|W )∑
T

P(T )P(ZI |T )E(θ)

(7)

Similarly, we can iteratively update belief on terrain by evaluating:

P(T |ZI ,ZNSS) = ηP(T )P(ZI |T )∑
W

P(ZNSS|W )E(θ) (8)

Since θ is modeled by a Dirichlet distribution, E(θ) can be efficiently calcu-
lated by normalizing the corresponding hyperparameters. We can update θ using
Equation 9. For compactness we define the full observation vector Z = [ZI ,ZNSS].

P(θ |α,Z) = ∑
T,W

P(θ |αinit ,Z,T,W )P(T,W |Z)

= ∑
T,W

P(θ |αinit ,T,W )P(T,W |Z)
(9)
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Since P(θ |α,Z) is also a Dirichlet distribution (conjugate prior) we can calculate
the posterior by updating the hyperparameters αw,t = αw,t +P(W = w,T = t|Z) for
all values of W and T , where w ∈ {1, . . . , |W |} and t ∈ {1, . . . , |T |}. When |W | and
|T | become large, Gibbs sampling approaches in topic modeling literature can be
used to approximate this update [10]. When a terrain cell is observed we also update
the terrain beliefs in neighboring cells using a Gaussian kernel.

4.2 Planning

Given the generative BN model, the robot needs to plan paths in an initially un-
known environment and decide when to use the NSS to maximize the information
gained on the water distribution in the map cells, described in Algorithm 1. As per
the optimization objective in Equation 1, the planned paths and sensing sequences
must meet mission budget constraints and arrive at the goal location, xgoal .

Solving Equation 1 for large environments, long mission durations and large ob-
servations spaces quickly becomes intractable, especially for field robots with lim-
ited computational resources. Therefore we explore approximate online planning
approaches where in each time step the robot executes the first action in the calcu-
lated plan and adaptively updates plans as new observations are taken. To tackle this
sequential decision making problem, we employ the MCTS planning algorithm-
a best first, anytime algorithm popular in game playing literature, which like our
problem requires reasoning about both long horizons and stochasticity [5].

We formulate the MCTS such that each node in the tree is a potential move-
ment or sensing action that can be made. It is a tuple consisting of the robot’s x
and y position, a binary variable indicating whether the NSS was used and the re-
maining sensing budget. MCTS then iteratively builds a tree by selecting leaf nodes
to expand using a tree policy, estimating terminal rewards associated with the leaf
by conducting simulations or ‘rollouts’ in the decision space and back-propagating
the reward up the tree. The process is repeated until some computational budget is
reached, at which point the root child with the highest average reward is selected as
the action to be executed.

We use the Upper Confidence Tree policy to select which leaf nodes to expand,
which is a popular approach known to produce good results [14]. For the simula-
tion phase, a random action selection policy is used from the leaf node to the goal
position. In this problem instance, the reward of the policy rollout is the expected
information gained on water distribution across the map after the policy has been
executed, where information gain is defined by Equation 2. Exact computation of
the reward involves averaging over all possible observations that can result from the
rollout sequence which quickly becomes intractable. We approximate information
gain by sampling observations from the robot’s belief of the map and simulating
a belief update. As number of iterations increases, the MCTS converges to the op-
timal sensing action sequence. This formulation gives us a principled approach to
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Algorithm 1 Our algorithm uses MCTS for the planner(·), which is executed after
every action.
1: Input: SensingBudget S, BeliefSpace Bel, RemainingBudget R, GoalPosition xgoal
2: function MAIN
3: R← S
4: while R > 0 do
5: robotPose← getLocalisation()
6: aopt ← planner(robotPose,R,Bel,xgoal)
7: Z← takeObservation(aopt)
8: Bel← updateBelie f Space(Z,Bel)
9: R← R− cost(aopt)

Algorithm 2 MCTS Algorithm
function PLANNER(robotPose,R,Bel,xgoal)

T ← initialiseTree(robotPose,R)
currentNode← T.rootNode
while within computational budget do

currentNode← treePolicy(T )
simSeq← de f aultPolicy(currentNode,R)
reward← getReward(simSeq,Bel)
T ← updateTree(T,reward)

return bestChild(T )

incorporate multiple sensors in planning and simultaneously handle long horizons
and uncertainty in an anytime manner.

5 Analysis

As mentioned in Sec 2 there are several algorithms in literature for informative path
planning [3, 12]. However, these approaches are not suitable for tackling situations
in which the robot has to simultaneously decide when to activate secondary sensors
in addition to planning informative paths which adhere to budget and goal con-
straints in initially unknown environments. We therefore compare the performance
of our approach with the following three baseline algorithms:
Random: At each time step the robot determines the set of actions it can execute
in the next step without breaking the goal position and sensing budget constraint. A
random action is chosen out of this set. The random policy serves as a baseline for
algorithm performance.
Greedy: At each time step, out of the reachable action set, the robot selects the
action with the highest expected information gain of the water abundance to sensing
cost ratio. This is given by:

a∗next = argmax
a∈A

∑z I(z)P(z|a)
cost(a)

(10)



10 Authors Suppressed Due to Excessive Length

Greedy algorithms are popular in similar field applications [10, 18] due to their
simplicity and depending on the problem, submodularity.
Lawnmower: We use a ‘lawnmower’ pattern to get uniform coverage of the en-
vironment. Here we arbitrarily allocate 50% of the sensing budget to the path and
50% to using the NSS. A lawnmower-like path which adheres to the initial and fi-
nal positions and the budget is designed manually and the NSS is used at uniform
intervals along the path.

Our approach, MCTS-50 (50 iterations were used for MCTS) was evaluated
against the baseline algorithms on 50 randomly generated 20 by 20 voronoi maps
with fixed start and goal positions. Terrain, water, and the observation nodes were
categorical variables with three classes. The true correlation between terrain type
and water class (initially unknown to the robot) was set to be 0.85. I.e. given the
terrain class, the water class could be predicted with 85% accuracy. Sensor noise for
the terrain was set to be 10% while the NSS had 5%. All unobserved nodes were
given an uniform prior and the α hyperparameters were initialized to a value of 1.
The cost of movement was 1 unit per cell while the NSS required 5 units. Two per-
formance metrics were used: information gain and the average posterior probability
of the correct class of water in the cells which we call the recognition score.

Mean and standard deviation is reported and statistical significance is shown with
the paired t-test p-value and the effect size using Cohen’s d. Negative values of d
indicate that the performance of the proposed algorithm is greater than the compared
algorithm. The magnitude of d gives the size of the effect, with d > 0.2, d > 0.5 and
d > 0.8 being thresholds for small, medium and large effects respectively.

The results are shown in Tables 1 and 2. In terms of average information gain,
we statistically significantly outperform random and greedy policies with notable
effect sizes (bolded). For the recognition score, the performance improvement is
less pronounced. This is because the robot only observes a small proportion of the
map and the unseen areas dominate the score.

The performance of the lawnmower is comparable to MCTS in these simulated
experiments. In completely unknown and open environments, paths which provide
good spatial coverage of the environment are indeed a logical and effective way
to gain information. In more realistic environments with obstacles, planning lawn-
mower paths becomes more complicated. When environmental obstacles are known
a priori Choset’s approach can be applied [6]. In unknown or partially known en-
vironments, however, additional replanning would need to occur as obstacles are
discovered, something our approach already does. Further, adapting the lawnmower
approach to an arbitrary number of sensors would require a way to split the sensing
budget across the different sensing modalities, which the MCTS optimizes automat-
ically in a principled manner. While the 50-50 budget split between paths and NSS
produced good results in the simulation setting, there is no guarantee that perfor-
mance will continue to be competitive in longer missions and large environments.

In robotic missions, there is usually some prior knowledge available such as or-
bital maps or scientific beliefs on what the robot is likely to see. A key advantage of
our approach is that we can easily encode this knowledge in the form of Bayesian
priors. Orbital maps can be encoded by biasing the prior distribution of terrain types
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Table 1: Information gain for the different algorithms and their performance relative
to MCTS-50

Budget Greedy Random Lawnmower MCTS-50
µ σ p d µ σ p d µ σ p d µ σ

60 20.7 8.93 0.05 -0.34 15.6 7.16 1e-5 -0.95 22.4 8.99 0.40 -0.17 24.0 10.23
80 28.4 11.76 0.003 -0.60 20.6 10.92 9e-8 -1.20 31.7 12.62 0.03 -0.35 36.7 15.54
100 32.3 12.81 0.004 -0.57 27.1 13.42 1e-4 -0.88 39.4 14.50 0.52 -0.12 41.4 18.81
120 39.3 13.99 0.003 -0.62 29.0 12.93 2e-8 -1.31 46.6 19.24 0.39 -0.14 49.1 17.37
140 43.4 13.12 3e-5 -0.84 33.3 16.58 5e-9 -1.34 54.8 21.4 0.62 -0.10 56.8 18.50

Table 2: The average posterior probability of the true water distribution given the
maps learned by the different algorithms, larger values are better.

Budget Greedy Random Lawnmower MCTS-50
µ σ p d µ σ p d µ σ p d µ σ

60 0.37 0.02 0.56 -0.08 0.36 0.02 0.004 -0.43 0.38 0.02 0.14 0.25 0.38 0.03
80 0.39 0.03 0.008 -0.44 0.37 0.03 3e-8 -0.94 0.40 0.03 0.17 -0.19 0.41 0.04
100 0.41 0.03 0.21 -0.19 0.38 0.03 8e-5 -0.81 0.42 0.03 0.36 0.15 0.41 0.05
120 0.42 0.04 0.04 -0.35 0.38 0.04 5e-10 -1.37 0.43 0.03 0.84 -0.03 0.43 0.03
140 0.43 0.04 0.0008 -0.54 0.39 0.04 3e-12 -1.62 0.44 0.04 0.15 -0.26 0.45 0.03

while scientific knowledge of known sensor correlations can be incorporated by in-
crementing the α hyperparameters. Unlike the standard lawnmower, our approach
will automatically take advantage of this information without algorithmic modifica-
tions. To verify this, we ran 50 trials with a sensing budget of 140 where the robot’s
belief of the correct terrain type was initialized to 0.5 instead of a uniform distribu-
tion. MCTS outperformed the lawnmower with p-values and effect sizes of < 0.001
and ≈−0.5 respectively for both information gain and recognition scores.

The computational time of MCTS depends on the remaining sensing budget and
problem size. For our MATLAB implementation, 50 iterations took between 0 and 5
seconds. With more efficient memory management, optimized implementation and
parallelization, significant speed boosts can be achieved which will further boost the
performance of MCTS as more iterations can be carried out.

6 Results with Mojave Data

Since much of the data from the Mojave Desert test site was collected in line tra-
verses, we selected 100 pairs of ground camera images and NSS counts from this
dataset and redistributed them into a 10 by 10 grid to simulate a field environment.
Typical ground camera images are shown in Fig. 4. The images from the MVP
dataset are quite noisy with both strong shadows and regions with saturation.

The data now needs to be transformed into a representation that can be fed into
the generative model. While any black box classifier model can be used for this,
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(a) Pavement Terrain Type (b) Transition Terrain Type (c) Wash Terrain Type

Fig. 4: Different types of terrain in the MVP test area. Pavements were found to be
associated with high NSS counts, while washes had low NSS counts. The transition
terrain was in between washes and pavements and had moderate NSS counts.

we use a simple example based classifier for illustration. We selected image subsets
based on domain knowledge of the terrain classes present and used these to define
four cluster centers. Candidate images are then classified based on the closest clus-
ter centre in intensity space. The labels are transformed into soft evidence using
a confusion matrix derived from training data. Similarly, k-means clustering with
three clusters is used to probabilistically classify NSS counts into water abundance.
The probabilistic classifications are fed into the BN as soft evidence. Continuous
data can also be directly fed into the proposed generative model as long as the prob-
abilistic mapping from T and W nodes to observations can be determined.

We compare MCTS-50 and the lawnmower algorithms on 20 randomly generated
10 by 10 maps with a sensing budget of 40. We ran two sets of trials with NSS costs
of 5 and 2 units. Since the sensing budget of 40 is relatively small, by reducing the
cost of NSS, the latter trial artificially increases the planning horizon and intends to
show the resulting changes in performance.

The results are shown in Fig. 5. In terms of information gain, MCTS is on average
better than lawnmower for this sample and statistically significantly when the NSS
cost is 2. There is a larger performance gap compared to the simulations. This is
because, doing a 50-50 split in the lawnmower budget allocation is no longer as
effective for this map size, sensing budget and sensor model. Like in simulations,
we assumed an initially unknown environment and further improvements can be
expected with the integration of prior knowledge. In terms of recognition score,
MCTS is slightly lower than lawnmower in NSS-5 and similar in NSS-2 but remains
statistically indifferent like in simulations.

7 Conclusions and Future Work

Being able to reason about scientific latent variables of interest to plan informative
sensing sequences is an important problem in field robotics. We have presented a
scalable approach to automatically learn sensor correlations online and a sampling
based approach to plan long horizon sensing sequences which is anytime and incor-
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Fig. 5: Comparison of Information Gain and Recognition Scores for Lawnmower
and MCTS for different NSS costs

porates budget and goal position constraints. Our simulations and real data exper-
iments show we significantly outperform myopic approaches which are popular in
similar applications and compete with maximum coverage paths in unknown envi-
ronments. Our approach can also exploit prior knowledge when it is available with-
out further algorithmic modifications. In future work we would like to incorporate
unsupervised approaches to classification and evaluate our approach on different
applications such as remote sensing and agriculture.
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