38 research outputs found

    The atomic orbitals of the topological atom

    Get PDF
    The effective atomic orbitals have been realized in the framework of Bader’s atoms in molecules theory for a general wavefunction. This formalism can be used to retrieve from any type of calculation a proper set of orthonormalized numerical atomic orbitals, with occupation numbers that sum up to the respective Quantum Theory of Atoms in Molecules (QTAIM) atomic populations. Experience shows that only a limited number of effective atomic orbitals exhibit signiïŹcant occupation numbers. These correspond to atomic hybrids that closely resemble the core and valence shells of the atom. The occupation numbers of the remaining effective orbitals are almost negligible, except for atoms with hypervalent character. In addition, the molecular orbitals of a calculation can be exactly expressed as a linear combination of this orthonormalized set of numerical atomic orbitals, and the Mulliken population analysis carried out on this basis set exactly reproduces the original QTAIM atomic populations of the atoms. Approximate expansion of the molecular orbitals over a much reduced set of orthogonal atomic basis functions can also be accomplished to a very good accuracy with a singular value decomposition procedure

    Local spins: improved Hilbert-space analysis

    Get PDF
    The decomposition of for a general wave function has been carried out in the framework of the Hilbert-space analysis. The one and two-center components fulfill all physical requirements imposed to date. An inherent ambiguity of the Hilbert-space decomposition of a two-electron quantity, in particular using a Mulliken-type scheme, is also discussed in detail. The formalism of effective atomic densities has allowed us to derive in a simple manner appropriate expressions for the decomposition of in the framework of Hilbert space analysis that are consistent with Mulliken population analysis and related quantities. Using a particular mapping we have derived the Hilbert-space expressions also in the framework of Löwdin population analysis in a straightforward manner. The numerical results obtained with proved to be more robust and reliabl

    Aufbau principle and singlet-triplet gap in spherical Hooke atoms

    Get PDF
    Singlet and triplet spin state energies for three-dimensional Hooke atoms, that is, electrons in a quadratic confinement, with even number of electrons (2, 4, 6, 8, 10) is discussed using Full-CI and CASSCF type wavefunctions with a variety of basis sets and considering perturbative corrections up to second order. The effect of the screening of the electron–electron interaction is also discussed by using a Yukawa-type potential with different values of the Yukawa screening parameter (λee = 0.2, 0.4, 0.6, 0.8, 1.0). Our results show that the singlet state is the ground state for two and eight electron Hooke atoms, whereas the triplet is the ground spin state for 4-, 6-, and 10-electron systems. This suggests the following Aufbau structure 1s < 1p < 1d with singlet ground spin states for systems in which the generation of the triplet implies an inter-shell one-electron promotion, and triplet ground states in cases when there is a partial filling of electrons of a given shell. It is also observed that the screening of electron–electron interactions has a sizable quantitative effect on the relative energies of both spin states, specially in the case of two- and eight-electron systems, favoring the singlet state over the triplet. However, the screening of the electron–electron interaction does not provoke a change in the nature of the ground spin state of these systems. By analyzing the different components of the energy, we have gained a deeper understanding of the effects of the kinetic, confinement and electron–electron interaction components of the energy.This research was funded by Eusko Jaurlaritza (the Basque Government), through Consolidated Group Project No. IT1584-22, PIBA19-0004, and 2019-CIEN-000092-01, and the Spanish MINECO/FEDER Projects No. PGC2018-097529-B-100, PGC2018-098212-B-C21, EUIN2017-88605, and EUR2019-103825. Eloy Ramos-Cordoba acknowledges funding from the Juan de la Cierva program IJCI-2017-34658. Technical and human support provided by IZO-SGI, SGIker (UPV/EHU, MICINN, GV/EJ, ERDF, and ESF) is gratefully acknowledged

    Software for the frontiers of quantum chemistry:An overview of developments in the Q-Chem 5 package

    Get PDF
    This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange–correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear–electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an “open teamware” model and an increasingly modular design
    corecore