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Local spins: improved Hilbert-space analysis
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The decomposition of hŜ2i for a general wave function has been carried out in the framework of

the Hilbert-space analysis. The one and two-center components fulfill all physical requirements

imposed to date. An inherent ambiguity of the Hilbert-space decomposition of a two-electron

quantity, in particular using a Mulliken-type scheme, is also discussed in detail. The formalism of

effective atomic densities has allowed us to derive in a simple manner appropriate expressions for

the decomposition of hŜ2i in the framework of Hilbert space analysis that are consistent with

Mulliken population analysis and related quantities. Using a particular mapping we have derived

the Hilbert-space expressions also in the framework of Löwdin population analysis in a

straightforward manner. The numerical results obtained with the latter formalism have

proved to be more robust and reliable.

1 Introduction

The concept of local spin emerges in a quite natural fashion

when describing the electronic structure of systems with

diradical character such as non-Kekulé molecules or transi-

tion state structures of chemical reactions. Heisenberg

Hamiltonian models also invoke the concept of local spin in

order to assess the nature of spin–spin interactions between

magnetic centers. Often, the spin properties of a molecule can

be characterized by the spin density. There are, however, cases

where the overall system is a singlet (where there is no spin

density), but for which the existence of some local spin is

assumed. In the last few years there has been a growing

interest in recovering local spins from the analysis of the wave

function of ab initio calculations.1–15 Different schemes have

been proposed in the literature, most of which are rooted in

the decomposition of the expectation value of the spin squared

operator into atomic and diatomic contributions, for both

single-determinant and correlated wave functions. Because the

partitioning of the single physical quantity hŜ2i, which in the

case of singlet wave functions is zero, into components is not

unique, a number of physical requirements4,9,15 have been

introduced.

(i) One should get no spins whatever for covalent systems

described by a closed-shell RHF wave function using doubly-

filled orbitals.

(ii) If the wave function is properly dissociating, then the

asymptotic values of the atomic spins obtained for the atoms

at large distances should coincide with the corresponding

values of the free atoms.

(iii) In an open-shell system the overall hŜ2i does not depend
on the actual Ŝz projection of the electronic state (multiplet)

considered, so one may request to have hŜ2i components that

do not depend on Ŝz either.

(iv) No two-center terms should appear in the case of single-

electron systems (or ROHF systems with a single unpaired

electron).

In a previous paper15 we showed that the following general

expression

hŜ2i= 3
4

R
u(

-
r1) d

-
r1 +

1
2

R R
[G(-r1,

-
r2)� 1

2
rs(-r1;

-
r2)r

s (
-
r2;

-
r1)] d

-
r1d

-
r2

� 1
2

R R
[G(-r1,

-
r2;

-
r2,

-
r1) � 1

2
rs (-r1;

-
r1)r

s(
-
r2;

-
r2)] d

-
r1d

-
r2
(1)

is the natural starting point to derive atomic and diatomic

components of hŜ2i that satisfy requirements (i) to (iv). This

equation is written in terms of the density of effectively

unpaired electrons, u(
-
r), defined by Takatsuka et al.16 as

u(
-
r) = 2r(-r) �

R
r(-r; -

r0)r(-r0; -
r)d

-
r0, (2)

the spin-density matrix

rs(-r; -
r0) = ra(-r; -

r0) � rb(-r; -
r0), (3)

and the spin-less cumulant of the second order density matrix,

G(-r1,
-
r2;

-
r01,

-
r02), which vanishes for single-determinant wave

functions and can be defined as the sum of the usual (spin-

dependent) cumulants as

Gð~r1;~r2; ~r 01;~r 02Þ ¼
X
s;s0

Gss0ss0 ð~r1;~r2; ~r 01;~r 02Þ ð4Þ
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where

Gss0ss0 ð~r1;~r2; ~r 01;~r 02Þ ¼ rss
0ss0

2 ð~r1;~r2; ~r 01;~r 02Þ

� rsð~r1;~r 01Þrs
0 ð~r2;~r 02Þ

� dss0 ½rsð~r1;~r 02Þrsð~r2;~r 01Þ�:

ð5Þ

In ref. 15 we obtained one and two-center contributions for a

general wave function in the framework of the 3D-space analysis,

i.e., for ‘‘fuzzy atoms’’17 and Bader’s atomic domains.18

In this paper we wish to undertake the decomposition in the

context of the so-called ‘‘Hilbert-space analysis’’.19 The motivation

is twofold: first, aside its conceptual relevance, the Hilbert-space

decomposition does not require atomic numerical integrations, in

contrast to the 3D-space analysis; thus it is exact (is free of the

numerical errors of that integration). Also, the significant

reduction in the computational cost of the decomposition may

be relevant for very large systems, especially as compared to the

3D-space methods with complicated atomic basins of Bader’s

analysis. However, there is an apparent ambiguity in decomposing

two-electron quantities in the framework of Hilbert-space analysis

(in particular for theMulliken-type scheme), which to date has not

received due attention. In this paper we also wish to analyze in

more detail this problem, which is particularly relevant in the case

of the decomposition of hŜ2i. That ambiguity will be exposed in

the next section. Then, we will briefly describe the formalism of

effective atomic densities,20 which will allow us to derive in a

straightforward manner the most appropriate expressions for the

decomposition of hŜ2i in the framework of Hilbert space analysis.

Finally, some numerical results at the correlated level will be

presented and discussed.

2 Alternative summation schemes in the

Hilbert-space analysis

The decomposition of physical quantities into atomic and

diatomic contributions is rooted on the identification of an

atom within the molecule. Since practical quantum chemistry

mostly uses atom-centered basis sets, the atom may be identi-

fied with its nucleus and the subspace spawned by the set of

atomic basis functions centered on it. The simplest example of

application of such Hilbert-space analysis is Mulliken popula-

tion analysis,21 perhaps the most familiar method to determine

the number of electrons associated with an atom. Mulliken’s

gross population of atom A is defined as:

NA ¼
X
m2A

X
n

DmnSnm ¼
X
m2A
ðDSÞmm; ð6Þ

where the notation m A A indicates that the summation runs

over all atomic basis functions centered on atom A. We recall

in this context that matrix DS is the proper finite basis

representation of the first-order density matrix if an over-

lapping basis set (S a I) is used.22

In a similar manner, the Mayer–Wiberg (closed-shell for

simplicity) bond order,23 BAB, between atoms A and B is

defined as

BAB ¼
X
m2A

X
s2B
ðDSÞmsðDSÞsm: ð7Þ

Inspecting the expression in eqn (6), one can see that

the overlap integrals enter it in a somewhat non-symmetric

manner: one of the subscripts (m) is serving for subdividing the

quantity into atomic contributions, while another (n) is a

‘‘dummy’’ index, for which summation over the whole basis

is performed—it is used to form the matrix-product DS. This

difference may be connected with the fact that for overlapping

basis sets matrix DS is twice the projection matrix performing

the projection of any vector d of LCAO coefficients on the

subspace of the occupied molecular orbitals as DSd.22 The

same distinction appears also in eqn (7) of the Mayer–Wiberg

bond order. In the case of real orbitals, one could get exactly

the same Mulliken atomic populations also in the formP
m2A ðSDÞmm, i.e., by using matrix SD which performs the

analogous projection of the row-vectors dw as dwSD. While in

the first case the systematization of the terms according to the

individual atoms corresponds to the subscript coming from the

‘‘ket’’ part of the overlap integral, in the second one it

corresponds to the subscript coming from its ‘‘bra’’ part.

It seems logical to stick to one of these possibilities (we prefer

the first one), and use it in all types of analyses. Thus the

splitting of the terms in the expression of the bond order index

eqn (7) corresponds to the subscripts of the overlap integrals

coming from the ‘‘kets’’.

In principle, if an expression contains products with two

overlap matrices, then a subdivision into atomic and diatomic

contributions by taking one subscript from ‘‘bra’’ and another

from ‘‘ket’’ is also possible. In the case of the bond order, that

leads to a modified definition of the bond order index24 as

B0AB ¼
X
m2A

X
n2B
ðSDSÞmnDnm ð8Þ

As the bond order is a component of the integral of the

exchange density, formally both definitions could be accepta-

ble: they represent different decompositions of that integral

into a sum of one- and two-center contributions. However,

there is a serious argument favoring the definition of eqn (7).

The modified, non-symmetric, definition eqn (8) gives results

that are much less ‘‘chemical’’ than those given by the original

one: it cannot, for instance, recover the integer values for first-

row diatomics (e.g., 3 for N2) if a minimal basis set is used, as

does the original definition of eqn (7). Another argument

against such type of ‘‘bra’’–‘‘ket’’ mixing is the high degree

or arbitrariness that would be introduced in the case of e.g.

Generalized Population Analysis,25 typically used to detect

patterns of multicenter bonding, where the expressions may

contain three, four or more overlap matrices. Furthermore, it

has been shown26 that one can introduce a particular mapping

(see Appendix) between the atomic overlap matrices of the

atomic orbitals and the conventional overlap matrix that

permits finding a one-to-one correspondence between the

Hilbert-space and the more general 3D-space analyses expres-

sions of quantities like bond orders, atomic valences or energy

components. Such a general mapping is not possible for

expressions involving subdivision of the terms according to

both ‘‘bra’’ and ‘‘ket’’ subscripts.

These considerations are of interest in the present context

because in the recent paper by Alcoba et al.9 a decomposition
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of hŜ2i is performed in a manner that one index of the overlap

matrix is assigned according to the term coming from the

‘‘bra’’ and another coming from the ‘‘ket’’. (These authors

distinguish between them by using both subscripts and super-

scripts, which, however, do not represent covariant and con-

travariant indices.) Therefore, their decomposition is

consistent only with the use of the alternative bond order

formula eqn (8).w
In the next section we will briefly describe the formalism of

effective atomic densities,20 which will allow us to derive in a

straightforward manner the most appropriate expressions for

the decomposition of hŜ2i in the framework of Hilbert space

analysis.

3 Effective atomic density matrices formalism

The formalism of the atomic and diatomic effective densities is

based on the exact decomposition of one- and two-electron

densities into components that can be considered their one-

center and one- and two-center contributions, respectively.

These atomic and diatomic densities are identified with the

contributions of each atom and pairs of atoms to the overall

density, and can be used to derive in a common framework

atomic populations, bond orders, atomic valences, molecular

energy components, etc. for any kind of atom in molecule

definition. In the simplest case, one can define the effective

atomic contributions to the electron density, rA(
-
r), simply

fulfilling rð~rÞ �
PN

A rAð~rÞ. The integral over the whole space

of this function for atom A quite naturally yields the electron

population associated with the atom
R
rA(

-
r)d

-
r = NA. (9)

The actual numerical value depends upon how rA(
-
r) is defined.

In the framework of 3D-space analysis, rA(
-
r) can be written in

general as

rA(
-
r) = wA(

-
r)r(-r) (10)

where wA is a non-negative weight function defined for each

atom and each point of the 3D space satisfying
P

A wAð~rÞ ¼ 1.

The actual definition of atom in the molecule (‘‘fuzzy’’ or

disjoint) is contained in the atomic weight functions.

In the case of Hilbert-space analysis, the effective atomic

density can be most suitable written in terms of the matrix

elements of the LCAO density matrix as

rAð~rÞ ¼
X
m2A

X
n

Dmnw�nð~rÞwmð~rÞ: ð11Þ

It is trivial to see that the integration of eqn (11) yields

Mulliken’s gross population of atom A, in accord with eqn (6).

In a similar manner, by combining the appropriate effective

atomic contributions of the first-order density matrix to build

effective diatomic exchange densities:

rAB
x (

-
r;

-
r0) = 1

2
[rA(

-
r;

-
r0)rB(

-
r0;

-
r) + rB(

-
r;

-
r0)rA(

-
r0;

-
r)] (12)

where

rAð~r;~r 0Þ ¼
X
m2A

X
n

Dmnw�nð~rÞwmð~r 0Þ ð13Þ

is the atomic component of the first order spin-less density

matrix r(-r,-r0). One can easily recover upon integration of

eqn (12) the expression of eqn (7) for the Mayer–Wiberg

(closed-shell) bond orderZZ
rAB
x ð~r;~r 0Þd~r d~r 0 ¼

1

2

X
m2A

X
n

DmnSns
X
s2B

X
l

DslSlm

þ 1

2

X
m2B

X
n

DmnSns
X
s2A

X
l

DslSlm

¼
X
m2A

X
s2B
ðDSÞmsðDSÞsm ¼ BAB

ð14Þ

and so forth.

One advantage of using the formalism of effective atomic

densities is that one can switch from 3D-space to Hilbert-space

formulae or vice versa simply by taking the appropriate form

of the effective densities involved in the calculation. In a recent

paper15 we have put forward an improved general formula for

the decomposition of hŜ2i applicable for both single-determinant

and correlated wave functions. The numerical implementation

of the resulting one- and two-center components was origin-

ally carried out in the 3D-physical space. Here we will make

use of the formalism of the atomic and diatomic effective

matrices depicted above to derive in a simple manner the

appropriate one and two-center components of hŜ2i in the

framework of Hilbert-space analysis.

This exercise is of particular interest here because of the

formal ambiguity affecting Hilbert-space decompositions in

the selection of the indices put forward in the previous section.

We most definitely recommend to stick to the assignment of

subscripts that will be obtained here, which is consistent with

both Mulliken population analysis and the original bond order

definition eqn (7).

4 Decomposition of hŜ2i
Within the formalism of the effective atomic densities, the

respective one- and two-center contributions to hŜ2i can be

formally written from the general expression of eqn (1)

simply as

hŜ2iA = 3
4

R
uA(

-
r1)d

-
r1 +

1
2

R R
[GAA(

-
r1,

-
r2)

� 1
2
rsA(

-
r1;

-
r2)r

s
A(

-
r2;

-
r1)] d

-
r1d

-
r2 � 1

2

R R
[GAA(

-
r1,

-
r2;

-
r2,

-
r1)

� 1
2
rsA(

-
r1;

-
r1)r

s
A(

-
r2;

-
r2)] d

-
r1d

-
r2 (15)

and

hŜ2iAB = 1
2

R R
[GAB(

-
r1,

-
r2) � 1

2
rsA(

-
r1;

-
r2)r

s
B(

-
r2;

-
r1) d

-
r1d

-
r2

� 1
2

R R
[GAB(

-
r1,

-
r2;

-
r2,

-
r1)� 1

2
rsA(

-
r1;

-
r1)r

s
B(

-
r2;

-
r2)] d

-
r1d

-
r2,

(16)

where the atomic (in the case of u(
-
r) and rs(-r1,

-
r0)) and diatomic

(in the case of the cumulants, G) densities have been conveniently

used, instead of their global counterparts in eqn (1).

w It has recently been discovered that this type of decomposition had
also been used by some of us7 in the decomposition of hŜ2i from a
formula different from eqn (1) as a result of a programming error: two
subscripts have been interchanged by a mistake in the treatments of
the cumulants.
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In order to be consistent with the definitions of eqn (11) in

the framework of Hilbert-space analysis, the effective atomic

contributions of the density of effectively unpaired electrons

and the spin density matrix must be taken as

rsAð~r; ~r 0Þ ¼
X
m2A

X
n

Ps
mnw
�
nð~rÞwmð~r 0Þ ð17Þ

and

uAð~rÞ ¼
X
m2A

X
n
½2Dmn � ðDSDÞmn �w�nð~rÞwmð~rÞ; ð18Þ

where we have made use of eqn (2).

The spin-less cumulant, G, being a genuine two-electron

quantity, consists of atomic (if A = B) and diatomic (A a B)

contributions:

GABð~r1;~r2;~r 01;~r 02Þ ¼
X
m2A

X
s2B

X
n;l

Gmsnlw�nð~r1Þw�lð~r2Þwmð~r 01Þwsð~r 02Þ

ð19Þ

where Gmsnl are the corresponding matrix elements of the

cumulant in the atomic orbital basis.

Substituting eqn (17)–(19) into (15) and integrating, one

obtains, after some manipulations, the final expression for the

atomic components of hŜ2i

hŜ2iA ¼
3

4

X
m2A
½2ðDSÞmm � ðDSDSÞmm� �

1

4

X
m;n2A

ðPsSÞmnðPsSÞnm

þ 1

4

X
m;n2A

ðPsSÞmmðPsSÞnn

þ 1

2

X
m;s2A

X
n;l

ðGmsnl � GmslnÞSlsSnm:

ð20Þ

Similarly, for the diatomic spin components one gets

hŜ2iAB ¼ �
1

4

X
m2A

X
n2B
ðPsSÞmnðPsSÞnm

þ 1

4

X
m2A

X
n2B
ðPsSÞmmðPsSÞnn

þ 1

2

X
m2A

X
s2B

X
n;l

ðGmsnl � GmslnÞSlsSnm:

ð21Þ

In the single-determinant case the cumulants vanish and these

formulae reduce to those derived independently in ref. 27.

Eqn (13) and (14) of Alcoba et al.9 are similar to our

eqn (20) and (21). In that paper, however, aside from the

fact that the authors started from a formula different from

eqn (1) – therefore the coefficients of the different terms of

eqn (20) and (21) are different – the authors also chose a

different convention in the treatment of the cumulant part: one

index of the overlap matrix is assigned according to the term

coming from the ‘‘bra’’ and another coming from the ‘‘ket’’.

From now on we will refer to that different convention as

formula with ‘‘interchanged’’ indices.

Hilbert-space analysis is not restricted to Mulliken’s recipe.

Another alternative scheme is Löwdin population analysis,28

in which the atomic orbitals are first transformed to an

orthogonal basis. Even though it is less often used, Löwdin

analysis typically exhibits less basis set effects than Mulliken’s.

Indeed, it is well-known that Mulliken-based analyses can

yield meaningless results if combined with diffuse functions

lacking marked atomic character.29 In the Löwdin basis

the overlap matrix is a unit matrix and, as a consequence,

the schemes with conventional and ‘‘interchanged’’ indices are

equivalent.

5 Numerical results

We have written a program that performs the decomposition

of hŜ2i described above in the framework of the Hilbert-space

analysis for both Mulliken and Löwdin schemes, using the

appropriate effective atomic overlap matrices outlined in the

Appendix. Since Löwdin analysis is not strictly rotational

invariant30 with Cartesian 6d atomic orbitals, we recommend

its use only with pure 5d orbitals. We have included results

with 6d functions only for comparison purposes. The first- and

second-order density matrices have been obtained using a

modified version of Gaussian-03 program suite31 and an

auxiliary program32 that reads and processes CISD and

CASSCF outputs. All calculations have been carried out with

the geometrical structure of the molecules optimized at the

current level of theory unless otherwise stated.

To assess the numerical effect on the use of the different

summation schemes in the Hilbert-space analysis, we have

studied the H2 molecule at the CASSCF(2,4) level for several

basis sets. Table 1 gathers the local spin values on the H atom

for the conventional hŜ2iH and ‘‘interchanged’’ index conven-

tions hŜ2iintH within Mulliken’s scheme. The values for Löwdin

hŜ2iLH and 3D-space analysis hŜ2i3DH (using Becke atoms) are

also included for comparison.

The local spin values using eqn (20) are close to zero in all

cases, in line with the physical expectations. The numbers

exhibit reasonably small basis set dependence and are also very

similar to those obtained in the framework of 3D-space

analysis. Using the alternative formula with ‘‘interchanged’’

indices the values are somewhat too large, as compared with

the ‘‘conventional’’ ones, and suffer from strong basis set

effects, especially when combining two sets of diffuse functions

and Cartesian 6d 10f orbitals. With this extended basis set

Table 1 Atomic local spin values calculated at the CASSCF(2,4) level
for the H2 molecule at interatomic distance RH–H = 0.746 Å for
several basis sets

Basis set hŜ2iH hŜ2iintH hŜ2iLH hŜ2i3DH

cc-pVDZ 0.036 0.060 0.028 0.034
cc-pVTZ 0.035 0.051 0.025 0.034
cc-pVQZ 0.039 0.066 0.027 0.036
cc-pVTZ (6d) 0.035 0.052 0.027 0.034
cc-pVQZ (6d 10f) 0.043 0.089 0.028 0.036
aug-cc-pVDZ 0.038 0.069 0.025 0.034
aug-cc-pVTZ 0.020 0.031 0.026 0.036
aug-cc-pVQZ 0.035 0.044 0.026 0.036
d-aug-cc-pVQZ 0.045 0.130 0.024 0.034
aug-cc-pVTZ (6d) 0.046 0.115 0.027 0.036
aug-cc-pVQZ (6d 10f) 0.055 0.192 0.026 0.036
d-aug-cc-pVQZ (6d 10f) 0.095 0.891 0.023 0.034
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even the hŜ2iH value (0.095) is considerably larger than the

rest. The hŜ2iLH and hŜ2i3DH values show virtually no basis set

dependency. However, it seems that for the smaller basis sets

Mulliken’s values are closer to the 3D-space ones than

Löwdin’s.

The recommended Mulliken-type decomposition has also

been applied to a series of singlet molecules and the results are

presented in Table 2. The optimized geometries and the

wavefunctions were obtained at the CISD/6-31G** level of

theory (with Cartesian 6d functions). Note that for these

systems the overall hŜ2i value is zero, but small local atomic

spins can be induced by correlation fluctuations. One

should only expect the presence of significant diatomic

contributions in singlet systems if there would be any anti-

ferromagnetic coupling that could be distinguished from

covalent bonding.

As anticipated, the molecules of the HnX series (HF, H2O,

and NH3) show small values of local spin. The only systems

with atomic spin contributions larger than 0.1 are homo-

nuclear diatomic Li2 and Be2, with hŜ2iLi = 0.156 and

hŜ2iBe = 0.175, respectively. These values are consistent with

those obtained within the framework of 3D-space analysis.15

On the other hand, in the series of hydrocarbons the local

spins on the C atoms reported here show relevant differences.

Within the 3D-space formulation the atomic spin contribu-

tions were always below 0.1.15 In the Hilbert-space framework

both CH4 (hŜ2iC = 0.320) and C2H6 (hŜ2iC = 0.199) present

quite significant local spin on the C atoms. The most striking

finding in Table 2 is the negative local spin on the C atom

obtained for C2H2. Since there is no physical explanation for a

negative value of hŜ2iC, we tried to understand this odd

behavior. The local spin obtained at the same level of theory

with the 3D-space formulation was 0.083,15 which rules out

the truncated CISD wave function as responsible for the

spurious number. In order to check for basis set effects on the

local spin for this system, we have computed the hŜ2iC values at

the CISD/6-31G** optimized geometry using several basis sets.

The results are gathered in Table 3. The results using Löwdin

and 3D-space schemes are also included. The hŜ2iC is still

negative for most basis sets, except for the STO-3G, 6-311G

and aug-cc-pVDZ basis sets. Note the completely meaningless

value of �2.926 obtained with Mulliken’s scheme with the

quite standard aug-cc-pVTZ basis set.z Moreover, since

negative values appear for both small and relatively large

basis sets with and without polarization functions it is difficult

to draw any general conclusion from the data. However, the

local spin on C atoms using both Löwdin’s and the 3D-space

formulation is always small and positive, as it should be. One

can see a systematic lowering of the value upon inclusion of

polarization functions and no significant effects of the diffuse

functions.

In this context it is worth noting that rather odd numbers

have been obtained in the literature when combining Mulliken

analysis techniques and genuine two-electron quantities from

correlated wave functions. For instance, Vyboishchikov

et al.33 found unphysically positive correlation contributions

for diatomic energies at the CID level of theory. On the other

hand, the bond order indices that in the correlated case make

use of the actual pair density (the so-called delocalization

index, DI34–39) have also been a matter of debate as, for the

simplest case of H2 described with Weinbaum’s classical

correlated wave function, the DI gives just 0.39.38 One can

conclude once again that in some cases one can get spurious

results when decomposing quantities that explicitly include the

second-order density matrix in the framework of Mulliken

analysis. Fortunately, according to our experience, the patho-

logical case of acetylene seems to be quite exceptional (e.g. no

such problems occur for the isoelectronic N2 molecule). Never-

theless, the Hilbert-space results using Löwdin’s scheme prove

to be much more robust and reliable, especially for large

basis sets.

Finally, we have also considered several radical (doublet)

and diradical singlet molecules. In principle, the magnitude of

the local spin values and the diatomic spin components,

compared to the ideal values for localized spins, can help to

quantify the diradical character of the molecule. For a system of

two perfectly localized anti-parallel spins on centers A and B,

Table 2 CISD/6-31G** atomic hŜ2iA and diatomic hŜ2iAB values for
a set of singlet molecules at optimized geometries

Molecule hŜ2iA/hŜ2iAB Molecule hŜ2iA/hŜ2iAB

H2 H 0.036 C2H6 C 0.199
H–H �0.036 H 0.024

Li2 Li 0.156 C–C �0.122
Li–Li �0.156 C–H �0.069

Be2 Be 0.175 C� � �H 0.034
Be–Be �0.175 H–H 0.018

HF H 0.006 H� � �H �0.015
F 0.006 C2H4 C 0.056
H–F �0.006 H 0.024

H2O H 0.013 C–C �0.094
O 0.013 C–H �0.036
O–H �0.007 C� � �H 0.055
H� � �H �0.006 H–H �0.002

NH3 N 0.061 H� � �Hcis �0.026
H 0.019 H� � �Htrans �0.014
N–H �0.020 C2H2 C �0.139
H� � �H 0.000 H 0.019

CH4 C 0.320 C–C 0.147
H 0.026 C–H 0.048
C–H �0.080 C� � �H �0.056
H� � �H 0.018 H� � �H �0.006

Table 3 Atomic hŜ2iC components for acetylene molecule computed
at the CISD level of theory with different basis sets

Basis set hŜ2iC hŜ2iLC hŜ2i3DC

STO-3G 0.012 0.179 0.159
6-31G �0.074 0.119 0.114
6-31G** �0.136 0.082 0.084
6-31G**(6d) �0.139 0.080 0.083
6-311G 0.030 0.119 0.113
6-311G** �0.118 0.085 0.085
6-311G**(6d 10f) �0.143 0.091 0.084
cc-pVDZ �0.162 0.078 0.085
cc-pVTZ �0.271 0.087 0.079
cc-pVTZ(6d 10f) �0.146 0.104 0.078
aug-cc-pVDZ 0.729 0.078 0.087
aug-cc-pVTZ �2.926 0.092 0.078

z For this peculiar molecule, a non-nuclear attractor is found for the
STO-3G and cc-pVTZ basis sets, having no apparent effect on the
local spin values.
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a proper (without spin contamination) wave function would

yield local values of hŜ2iA = hŜ2iB =3/4 and hŜ2iAB = �3/4,
for an overall value of hŜ2i= 0, characteristic of a singlet. In

the case of a molecular system with a singly localized unpaired

electron on a center A, one can expect a local value of hŜ2iA
close to 3/4 (if this ideal system is described at the ROHF level

of theory then hŜ2iAR3/4 and all diatomic spin contributions

exactly vanish).15

The local spin analysis for benzyl and allyl radicals and the

set of diradical ortho-, meta- and para-benzyne molecules in

the singlet electronic state are gathered in Table 4. Benzene

molecule has also been included for comparison. The systems

have been studied at the CASSCF/6-31G** level of theory

with appropriate active spaces, i.e., full p-valence and appro-

priate s orbitals for the radical systems. We report only the

results obtained for Mulliken-type analysis. Using Löwdin or

3D-space schemes does not change significantly the values for

these systems.

Non-negligible local spin (0.114) is observed on the C atoms

of benzene, due to the fluctuation of p-electrons induced by the

electron correlation. The sign of the diatomic contributions is

consistent with the chemical picture displayed in Fig. 1a. Such

localization of the spins is also consistent with the observed

decrease in the electronic aromaticity indices upon inclusion

of electron correlation40 (note that a single-determinant

restricted description of benzene gives identically zero local

spins). Of course, the magnitude of the local spin and the

diatomic spin contributions is very small compared to the ideal

3/4 value, as one could anticipate for a genuine diamagnetic

system.

In phenyl radical the unpaired electron is localized on a s
orbital at/near C1 (in which the H atom is absent). The local

spin in the remaining C atoms is slightly greater than that in

the case of benzene, as well as the magnitude and sign pattern

of the diatomic spin components. The local spin value of the

radical center (0.968) exceeds the ideal value of a singly

localized electron (3/4). Furthermore, the hŜ2i12 value

increases (in absolute value), as well as the local spin on C2

with respect to the benzene. Of course, one cannot expect these

contributions to be fully additive as the shape of the p-orbitals
in the phenyl radical system is modified by the presence of the

unpaired s electron, and there can also be some s–p interplay.

Nevertheless, one can conclude that there must be a parallel

alignment of the local spin arising from the p and s electrons

in the radical center, as indicated in Fig. 1b.

The analysis of the allyl radical gives a completely different

picture. In this case there are significant local spin contri-

butions from all C atoms. The main local spin centers are

C1 and C3 atoms, with a value of 0.440, and the central C2

atom also contributes 0.145. The diatomic terms reveal

partial anti-ferromagnetic coupling (�0.145) between C1

and C2, and a ferromagnetic one of similar magnitude

(0.151) between C1 and C3. It is worth noting that the diatomic

spin components would vanish for a ROHF description of this

system. Thus, it is clear that in this case there is a significant

interplay between the three p electrons of the system, as

depicted in Fig. 1g.

Among the set of diradical benzyne isomers, para-benzyne

exhibits local spin features similar to the phenyl radical. The

local spin on the radical centers (atoms C1 and C4) is 0.962 and

the diatomic spin contribution hŜ2i14 = �0.862 indicates anti-

ferromagnetic coupling. The hŜ2i12 value is similar to that

obtained for the phenyl radical, and the diatomic values

involving the remaining atoms with contributions from the

Table 4 Atomic hŜ2iC and diatomic hŜ2iCC components at the
CASSCF/6-31G** level of theory. Active spaces used are (6,6) for
benzene, (7,7) for phenyl radical, (8,8) for ortho-, meta- and para-
benzyne and (3,3) for the allyl radical

C1 C2 C3 C4 C5 C6

Benzene
C1 0.114 �0.101 0.079 �0.069
Phenyl radical
C1 0.968 �0.145 0.100 �0.103
C2 0.129 �0.102 0.079 �0.071 0.078
C3 0.127 �0.102 0.080
C4 0.118
o-Benzyne
C1 0.324 �0.304 0.086 �0.075 0.080 �0.110
C3 0.130 �0.107 0.079
C4 0.115 �0.092
m-Benzyne
C1 0.540 �0.101 �0.344 �0.056 0.069 �0.104
C2 0.133 0.066 �0.065
C4 0.116 �0.097 0.074
C5 0.121
p-Benzyne
C1 0.962 �0.171 0.125 �0.862
C2 0.145 �0.106 �0.072 0.078
Allyl radical
C1 0.440 �0.145 0.151
C2 0.145

Fig. 1 Localized spins picture emerging from the local spin analysis.

Circled arrows represent the s contributions, small arrows indicate the

p counterpart.
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p orbitals are close to the case of benzene. The overall picture of

this system is consistent with a s,s-diradical, as depicted in

Fig. 1d.

The diradical character decreases in the case of ortho- and

meta-benzyne. In the former, the local spin on atoms C1 and

C2 is just 0.324, substantially smaller than the ideal value of

3/4 for a fully localized electron. Concomitantly, the diatomic

hŜ2i12 value decreases to �0.304. Since both values practically

compensate each other, the local spin contribution from the

s electrons is largely confined in these two atoms. Therefore,

the small magnitude of the local spin indicates that the two

electrons must exhibit some genuine pairing, leading to an

increase in the bonding interaction between the two atoms

relative to benzene. Indeed, the computed bond orders for

ortho-benzyne and benzene are 2.12 and 1.38, respectively. The

diatomic terms involving the remaining atoms are again quite

similar to the case of benzene. The negative hŜ2i16 value of

�0.110 could have its origin merely in the p electron system.

Hence, it is difficult in this case to establish whether the picture

of the system is the one displayed in Fig. 1c or the one with the

s spins of atoms C1 and C2 interchanged. We have also

performed the analysis for a CASSCF(2,2) wave function

(at the same geometry) where only the s electrons are corre-

lated. In this case the local spin on the C1 atom is just 0.271.

The estimate of 0.11–0.13 contribution of the p part for this

system seems to point towards an anti-parallel arrangement of

the s and p electrons on the C1 and C2 atoms, as depicted in

the figure.

The meta-benzyne molecule represents an intermediate

situation between the ortho and para isomers. There are

however some interesting features. First of all, the local spin

on the C1 and C3 atoms amounts to an intermediate value of

0.540, but the diatomic term is just �0.304. Intuitively one

could conclude that the contribution of the s to the local spin

is not fully compensated between the two atoms, as in the case

of ortho-benzyne. However, since the contribution of the

p electrons to the hŜ2i13 value is positive (indicating parallel

alignment), it partially compensates for a larger negative

contribution from the anti-parallel arrangement of the s
electrons. In this sense it is noticeable that for this molecule

the hŜ2i12 value (�0.101) is exactly the same as in benzene, and

also very similar to the hŜ2i16 one (�0.104). However, due to

symmetry, a parallel or anti-parallel alignment of the s and p
local spin contributions is not possible for both atoms C1 and

C3, as shown in Fig. 1e and f. As these atoms are equivalent by

symmetry, the picture of the localized spins of this system must

be a combination of the two (equivalent) configurations. This

suggests that the s and p contributions to the local spin of this

molecule could be additive to a large extent. Indeed, the values

of the atomic and diatomic terms involving C2, C4, C5 and C6

centers are very similar to those of benzene. Also, the local

spin on the C1 atom for a CASSCF(2,2) wave function is

0.469. After adding the estimate contribution of the p part

(ca. 0.1) one gets a value that is only slightly larger than the

actual value of 0.540.

In summary, the diradical character of the three isomers

increases from ortho to para, in agreement with other analysis.41

The local spin analysis allows for a deeper insight into how the

local spins are distributed in the centers and its magnitude.

6 Conclusions

We have carried out the decomposition of the expectation

value of the spin operator for a general wave function in the

framework of the Hilbert-space analysis that fulfills all the

requirements imposed to date. We have shown that there is

an ambiguity affecting Mulliken-type decompositions in the

selection of the indices where the atoms are centered. We

definitely recommend to stick to the assignment of subscripts

that is consistent with Mulliken population analysis and the

original Mayer–Wiberg bond orders. The results obtained are

in good agreement with physical expectation and, in general,

do not depend too much on the basis set. For the particular

case of acetylene one can get spurious results when performing

the decomposition of quantities that explicitly depend upon

the second-order density matrix, even with small basis sets.

We show that Löwdin’s scheme is more robust and reliable in

all cases.

7 Appendix

7.1 Mapping between 3D and Hilbert space analyses

One can introduce a mapping between the atomic overlap

matrices (used in the framework of 3D-space analysis) and

their Hilbert space analogues in order to establish a one-to-one

correspondence between the expressions obtained for 3D-space

and Hilbert-space analyses.

Let us consider for simplicity a closed-shell system with

doubly occupied molecular orbitals. In the framework of

3D-space analysis, the gross atomic population of atom A is

obtained as

NA ¼
Z

wAð~rÞrð~rÞd~r ¼
X
mn

DmnS
A
nm

¼ 2
X
mn

Xocc
i

c�niS
A
nmcmi ¼ 2 trðCþSACÞ; ð22Þ

where

SA
nm ¼

Z
wAð~rÞw�nð~rÞwmð~rÞd~r ð23Þ

are the elements of the atomic overlap matrix SA and C is the

matrix containing the orbital coefficients of the occupied

molecular orbitals. The Mulliken gross population defined in

eqn (6) can be also written in terms of the molecular orbital

coefficients as

NA ¼ 2
X
m2A

X
n

Xocc
i

c�niSnmcmi ¼ 2 trðCþSZACÞ ð24Þ

where ZA is a block-truncated unit matrix with all elements

equal to zero except ZAmm = 1 for m A A. Comparing eqn (22)

and (24) one can put into correspondence with the atomic

overlap matrix in atomic orbital basis SA the matrix product

SZA. It is easy to see that if one expresses one- and two-center

terms of ref. 15 in the atomic orbital basis and replaces the

matrix elements SA
mn by the [SZA]mn ones, the one- and two-

center terms of eqn (20) and (21) can be recovered. Note that

thisMulliken’s effective atomic overlap matrix is non-symmetric,

and this is the reason why the ‘‘interchanged’’ indices convention
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mentioned above leads to different expressions for the one-

and two-center components. In that scheme one essentially

uses both SZA and ZAS matrices. Thus, the one- and two-

center contributions of hŜ2i in the framework of Löwdin

analysis can be easily derived if an analogous mapping could

be established. In Löwdin population analysis one has

NL
A ¼

X
m2A

X
ns

S1=2
nm DmsS

1=2
sn ; ð25Þ

which can also be expressed in terms of the MO coefficients as

NL
A ¼ 2

X
m2A

X
ns

Xocc
i

c�siS
1=2
sm S1=2

mn cni ¼ 2 trðCþS1=2ZAS1=2CÞ

ð26Þ

Comparing this expression with eqn (22) and (24) it is easy to

identify S1/2ZAS1/2 as the appropriate Löwdin’s effective atomic

overlap matrix. Note that in this case, the atomic overlap

matrix is symmetric, which means that in the framework of

Löwdin analysis the conventional and ‘‘interchanged’’ index

schemes are equivalent.

Acknowledgements

Financial help has been furnished by the Spanish MICINN

Projects No. CTQ2011-23441/BQU, CTQ2011-23156/BQU

and Acción Complementaria del MCI (PCI2006-A7-0631).

Financial support from MICINN and the FEDER fund

(European Fund for Regional Development) was also provided

by grant UNGI08-4E-003. E.R.-C. acknowledges support from

the Spanish FPU program (Grant No. AP2008-01231). E.M.

acknowledges financial support from the EU under a Marie

Curie Career Integration grant (PCI09-GA-2011-294240)

and the Beatriu de Pinós program from AGAUR for the

postdoctoral grant (BP_B_00236). I.M. acknowledges partial

financial support from the Hungarian Scientific Research

Fund (grant OTKA 71816).

References

1 A. Clark and E. Davidson, J. Chem. Phys., 2001, 115, 7382–7392.
2 A. Clark and E. Davidson, Mol. Phys., 2002, 100, 373–383.
3 A. Clark and E. Davidson, J. Phys. Chem. A, 2002, 106, 6890–6896.
4 I. Mayer, Chem. Phys. Lett., 2007, 440, 357–359.
5 D. Alcoba, L. Lain, A. Torre and R. Bochicchio, Chem. Phys.
Lett., 2009, 470, 136–139.

6 I. Mayer, Chem. Phys. Lett., 2009, 478, 323–326.
7 I. Mayer and E. Matito, Phys. Chem. Chem. Phys., 2010, 12,
11308–11314.

8 D. Alcoba, A. Torre, L. Lain and R. Bochicchio, Chem. Phys.
Lett., 2011, 504, 11308–11314.

9 D. R. Alcoba, A. Torre, L. Lain and R. C. Bochicchio, J. Chem.
Theory Comput., 2011, 7, 3560–3566.

10 M. Reiher, Faraday Discuss., 2006, 135, 97–124.
11 C. Herrmann, M. Reiher and B. Hess, J. Chem. Phys., 2005,

122, 034102.

12 A. V. Luzanov and O. V. Prezhdo, Mol. Phys., 2007, 105,
2879–2891.

13 M. Podewitz, C. Herrmann, A. Malassa, M. Westerhausen and
M. Reiher, Chem. Phys. Lett., 2008, 451, 301–308.

14 C. Herrmann, L. Yu and M. Reiher, J. Comput. Chem., 2006, 27,
1223–1239.

15 E. Ramos-Cordoba, E. Matito, I. Mayer and P. Salvador, J. Chem.
Theory Comput., 2012, 8, 1270–1279.

16 K. Takatsuka, T. Fueno and K. Yamaguchi, Theor. Chim. Acta,
1978, 48, 175–183.

17 I. Mayer and P. Salvador, Chem. Phys. Lett., 2004, 383, 368–375.
18 R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Oxford

Univ. Press, Oxford, 1990.
19 I. Mayer, J. Comput. Chem., 2007, 28, 204–221.
20 S. F. Vyboishchikov, P. Salvador and M. Duran, J. Chem. Phys.,

2005, 122, 244110–244123.
21 R. S. Mulliken, J. Chem. Phys., 1955, 23, 1833–1841.
22 I. Mayer, THEOCHEM, 1992, 255, 1–7.
23 I. Mayer, Chem. Phys. Lett., 1983, 97, 270–274.
24 H. Sato and S. Sakaki, J. Phys. Chem. B, 2007, 111, 672.
25 R. Ponec and D. L. Cooper, Int. J. Quantum Chem., 2004, 97,

1002–1011.
26 J. G. Angyan, M. Loos and I. Mayer, J. Phys. Chem., 1994, 98,

5244–5248.
27 I. Mayer, Chem. Phys. Lett., 2012, 539–540, 172–174.
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