9 research outputs found

    From impact refugees to deterritorialized states: Foresighting extreme legal-policy cases in asteroid impact scenarios

    Get PDF
    Throughout recorded history, humans have crossed national borders to seek safety in nearby countries. The reasons for displacement have been generated by phenomena of terrestrial origin, but exposure to unexpected extra-terrestrial threats poses a different scenario. An asteroid impact warning implies a change of paradigm which would represent a historic precedent. In this regard, the analogies with natural disasters must be considered, along with multiple possible scenarios, and legal aspects related to (a) the legal framework to regulate this situation; (b) the action and responsibility of the states; and (c) the definition of impact refugee and the reconfiguration of traditional concepts such as deterritorialized states. In addition, the decision-making process and the actors involved must be led by a cooperative effort to improve international law. These new circumstances should be established with a consideration of inequalities between the states, and an aim of protecting humanity through democratic solutions using the safest, most effective techniques

    Deep machine learning for meteor monitoring: advances with transfer learning and gradient-weighted class activation mapping

    Full text link
    In recent decades, the use of optical detection systems for meteor studies has increased dramatically, resulting in huge amounts of data being analyzed. Automated meteor detection tools are essential for studying the continuous meteoroid incoming flux, recovering fresh meteorites, and achieving a better understanding of our Solar System. Concerning meteor detection, distinguishing false positives between meteor and non-meteor images has traditionally been performed by hand, which is significantly time-consuming. To address this issue, we developed a fully automated pipeline that uses Convolutional Neural Networks (CNNs) to classify candidate meteor detections. Our new method is able to detect meteors even in images that contain static elements such as clouds, the Moon, and buildings. To accurately locate the meteor within each frame, we employ the Gradient-weighted Class Activation Mapping (Grad-CAM) technique. This method facilitates the identification of the region of interest by multiplying the activations from the last convolutional layer with the average of the gradients across the feature map of that layer. By combining these findings with the activation map derived from the first convolutional layer, we effectively pinpoint the most probable pixel location of the meteor. We trained and evaluated our model on a large dataset collected by the Spanish Meteor Network (SPMN) and achieved a precision of 98\%. Our new methodology presented here has the potential to reduce the workload of meteor scientists and station operators and improve the accuracy of meteor tracking and classification.Comment: Accepted in Planetary and Space Scienc

    Oort cloud perturbations as a source of hyperbolic Earth impactors

    Full text link
    The observation of interstellar objects 1I/'Oumuamua and 2I/Borisov suggests the existence of a larger population of smaller projectiles that impact our planet with unbound orbits. We analyze an asteroidal grazing meteor (FH1) recorded by the Finnish Fireball Network on October 23, 2022. FH1 displayed a likely hyperbolic orbit lying on the ecliptic plane with an estimated velocity excess of \sim0.7 km\,s1^{-1} at impact. FH1 may either be an interstellar object, indicating a high-strength bias in this population, or an Oort cloud object, which would reinforce migration-based solar system models. Furthermore, under the calculated uncertainties, FH1 could potentially be associated with the passage of Scholz's binary star system. Statistical evaluation of uncertainties in the CNEOS database and study of its hyperbolic fireballs reveals an anisotropic geocentric radiant distribution and low orbital inclinations, challenging the assumption of a randomly incoming interstellar population. Orbital integrations suggest that the event on March 9, 2017 (IM2) from CNEOS may have experienced gravitational perturbation during the Scholz fly-by, contingent upon velocity overestimation within the expected range. These findings suggest that apparent interstellar meteors may, in fact, be the result of accelerated meteoroid impacts caused by close encounters with massive objects within or passing through our solar system.Comment: Accepted for publication in Icaru

    The Traspena meteorite: heliocentric orbit, atmospheric trajectory, strewn field, and petrography of a new L5 ordinary chondrite

    Get PDF
    The Traspena meteorite fell on 2021 January 18 about 20 km south-east of the city of Lugo (Galiza, Spain), shortly after a huge and bright fireball crossed the sky for 4.84 s. Astrometric measurements obtained from the fireball cameras of the Universidade de Santiago de Compostela (USC) as well as from many casual videos were used to determine the atmospheric trajectory of this meteoroid which penetrated the atmosphere and generated sound waves that were detected at three seismic stations. The original meteoroid had a diameter of about 1.15 m and a mass around 2620 kg. It impacted the Earth’s atmosphere with a steep entry angle of about 76∘.7 from a height of 75.10 km until fading away at 15.75 km with a velocity of 2.38 km s−1. Before the impact, this small asteroid was orbiting the Sun with a semimajor axis of 1.125 au, a moderate eccentricity of 0.386, and a low inclination of 4∘.55. A weak evidence of dynamic link with the PHA (Potential Hazardous Asteroid) Minos was investigated. During the atmospheric entry, two major fragmentation events occurred between heights of 35 and 29 km at aerodynamic pressures between 1 and 5 MPa. The strewn field was computed after calculating the individual dark flights of the main body along with two smaller fragments. Fortunately, 2 month after the superbolide, a 527-g meteorite was found. It was examined using several geochemical and petrographic analyses which allowed us to classify it as a moderately shocked (S3) L5 ordinary chondrite with a bulk density of 3.25 g cm−3This paper was supported by the Xunta de Galicia (Spain) under the ED431B 2020/38 grantS

    Impact hazard assessment from the automatic detection of meteoric and re-entry fireballs recorded by the SPMN network

    Get PDF
    The disruption of asteroids and comets can produce meteoroids that end up impacting the Earth’s atmosphere, creating shock waves or even excavating craters so they generate hazardous scenarios. In this thesis different software tools have been developed with the aim of automating the detection and analysis of fireballs from multiple station video recordings. Given the automatic video processing, it opens the possibility of providing early warnings associated with shock waves and massive meteorite arrival to the ground. As an example of reduction procedure two meteoric events have been analyzed, obtaining their real atmospheric trajectories, characterizing their flight and computing their respective heliocentric orbits. A method to estimate meteorite-dropping likelihood has also been implemented. In one of the study cases, NASA satellite data has been used to reconstruct the fireball trajectory and compute its mass and luminosity. Finally, the implications for impact hazard assessment associated to meter-sized meteoroids are discussed and assess in view of recent evidence

    A Voltage and Frequency Control Strategy for Stand-Alone Full Converter Wind Energy Conversion Systems

    No full text
    This paper addresses the design and analysis of a voltage and frequency control (VFC) strategy for full converter (FC)-based wind energy conversion systems (WECSs) and its applicability for the supply of an isolated load. When supplying an isolated load, the role of the back-to-back converters in the FC must change with respect to a grid-connected application. Voltage and frequency are established by the FC line side converter (LSC), while the generator side converter (GSC) is responsible for maintaining constant voltage in the DC link. Thus, the roles of the converters in the WECS are inverted. Under such control strategies, the LSC will automatically supply the load power and hence, in order to maintain a stable operation of the WECS, the wind turbine (WT) power must also be controlled in a load-following strategy. The proposed VFC is fully modelled and a stability analysis is performed. Then, the operation of the WECS under the proposed VFC is simulated and tested on a real-time test bench, demonstrating the performance of the VFC for the isolated operation of the WECS

    A Voltage and Frequency Control Strategy for Stand-Alone Full Converter Wind Energy Conversion Systems

    Get PDF
    This paper addresses the design and analysis of a voltage and frequency control (VFC) strategy for full converter (FC)-based wind energy conversion systems (WECSs) and its applicability for the supply of an isolated load. When supplying an isolated load, the role of the back-to-back converters in the FC must change with respect to a grid-connected application. Voltage and frequency are established by the FC line side converter (LSC), while the generator side converter (GSC) is responsible for maintaining constant voltage in the DC link. Thus, the roles of the converters in the WECS are inverted. Under such control strategies, the LSC will automatically supply the load power and hence, in order to maintain a stable operation of the WECS, the wind turbine (WT) power must also be controlled in a load-following strategy. The proposed VFC is fully modelled and a stability analysis is performed. Then, the operation of the WECS under the proposed VFC is simulated and tested on a real-time test bench, demonstrating the performance of the VFC for the isolated operation of the WECS

    Mural Endocarditis: The GAMES Registry Series and Review of the Literature

    No full text

    Contemporary use of cefazolin for MSSA infective endocarditis: analysis of a national prospective cohort

    Get PDF
    Objectives: This study aimed to assess the real use of cefazolin for methicillin-susceptible Staphylococcus aureus (MSSA) infective endocarditis (IE) in the Spanish National Endocarditis Database (GAMES) and to compare it with antistaphylococcal penicillin (ASP). Methods: Prospective cohort study with retrospective analysis of a cohort of MSSA IE treated with cloxacillin and/or cefazolin. Outcomes assessed were relapse; intra-hospital, overall, and endocarditis-related mortality; and adverse events. Risk of renal toxicity with each treatment was evaluated separately. Results: We included 631 IE episodes caused by MSSA treated with cloxacillin and/or cefazolin. Antibiotic treatment was cloxacillin, cefazolin, or both in 537 (85%), 57 (9%), and 37 (6%) episodes, respectively. Patients treated with cefazolin had significantly higher rates of comorbidities (median Charlson Index 7, P <0.01) and previous renal failure (57.9%, P <0.01). Patients treated with cloxacillin presented higher rates of septic shock (25%, P = 0.033) and new-onset or worsening renal failure (47.3%, P = 0.024) with significantly higher rates of in-hospital mortality (38.5%, P = 0.017). One-year IE-related mortality and rate of relapses were similar between treatment groups. None of the treatments were identified as risk or protective factors. Conclusion: Our results suggest that cefazolin is a valuable option for the treatment of MSSA IE, without differences in 1-year mortality or relapses compared with cloxacillin, and might be considered equally effective
    corecore