89 research outputs found

    Harmonizing DTI measurements across scanners to examine the development of white matter microstructure in 803 adolescents of the NCANDA study

    Full text link
    Neurodevelopment continues through adolescence, with notable maturation of white matter tracts comprising regional fiber systems progressing at different rates. To identify factors that could contribute to regional differences in white matter microstructure development, large samples of youth spanning adolescence to young adulthood are essential to parse these factors. Recruitment of adequate samples generally relies on multi-site consortia but comes with the challenge of merging data acquired on different platforms. In the current study, diffusion tensor imaging (DTI) data were acquired on GE and Siemens systems through the National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA), a multi-site study designed to track the trajectories of regional brain development during a time of high risk for initiating alcohol consumption. This cross-sectional analysis reports baseline Tract-Based Spatial Statistic (TBSS) of regional fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (L1), and radial diffusivity (LT) from the five consortium sites on 671 adolescents who met no/low alcohol or drug consumption criteria and 132 adolescents with a history of exceeding consumption criteria. Harmonization of DTI metrics across manufacturers entailed the use of human-phantom data, acquired multiple times on each of three non-NCANDA participants at each site’s MR system, to determine a manufacturer-specific correction factor. Application of the correction factor derived from human phantom data measured on MR systems from different manufacturers reduced the standard deviation of the DTI metrics for FA by almost a half, enabling harmonization of data that would have otherwise carried systematic error. Permutation testing supported the hypothesis of higher FA and lower diffusivity measures in older adolescents and indicated that, overall, the FA, MD, and L1 of the boys was higher than that of the girls, suggesting continued microstructural development notable in the boys. The contribution of demographic and clinical differences to DTI metrics was assessed with General Additive Models (GAM) testing for age, sex, and ethnicity differences in regional skeleton mean values. The results supported the primary study hypothesis that FA skeleton mean values in the no/low-drinking group were highest at different ages. When differences in intracranial volume were covaried, FA skeleton mean reached a maximum at younger ages in girls than boys and varied in magnitude with ethnicity. Our results, however, did not support the hypothesis that youth who exceeded exposure criteria would have lower FA or higher diffusivity measures than the no/low-drinking group; detecting the effects of excessive alcohol consumption during adolescence on DTI metrics may require longitudinal study

    Creating a custom mass-production channel on the Internet

    No full text

    Trustworthiness of information sources and information pedigrees

    Full text link
    To survive, and indeed thrive, in an open heterogenous information sharing environment, an agent's ability to evaluate the trustworthiness of other agents becomes crucial. In this paper, we investigate a procedure for evaluating an agent's trustworthiness as an information source. By separating the procedure into competency analysis and sincerity analysis, we are able to deal with complicated cases involving the passing-on of information, where the same information may reach a receiver agent via different routes. In order to keep information about the source agent we use an information pedigree as a means to maintain the history of communicated information. Our evaluation of trustworthiness can be employed to drive data fusion, weighted knowledge base merging, and multiple source conflict resolution. © Springer-Verlag Berlin Heidelberg 2002
    • …
    corecore