18 research outputs found

    Cutting-edge biotechnological advancement in islet delivery using pancreatic and cellular approaches.

    Get PDF
    There are approximately 1 billion prediabetic people worldwide, and the global cost for diabetes mellitus (DM) is estimated to be $825 billion. In regard to Type 1 DM, transplanting a whole pancreas or its islets has gained the attention of researchers in the last few decades. Recent studies showed that islet transplantation (ILT) containing insulin-producing β cells is the most notable advancement cure for Type 1 DM. However, this procedure has been hindered by shortage and lack of sufficient islet donors and the need for long-term immunosuppression of any potential graft rejection. The strategy of encapsulation may avoid the rejection of stem-cell-derived allogeneic islets or xenogeneic islets. This review article describes various biotechnology features in encapsulation-of-islet-cell therapy for humans, including the use of bile acids

    Development of functionalized carrageenan, chitosan and alginate as polymeric chelating ligands for water softening

    Get PDF
    Chitosan, carrageenan and alginate are among the most abundant biopolymers in nature. They were prepared in uniform beads shape with a diameter of 2 mm ± 10%, using the encapsulator for removal of calcium, magnesium and iron cations from hard water. Solutions of 100–500 mg/L were prepared from each cation, and the detection of cations was carried out using atomic absorption spectrometer. Carrageenan and chitosan were able to chelate the three cations without further modification. However, alginate beads succeeded to chelate iron and magnesium and failed to chelate any calcium ions; in contrast, it increased the initial calcium concentration! That could be due to the pre-cross-linking of alginate beads using calcium chloride solution, which may be leaked back to the solution. However, grafting the alginate beads with polyethyleneimine and bromoacetic acid rectified this problem and the new functional group, –COOH, has been proved using the FT-IR. Optimization of the results in terms of beads weight (0.25–3.0 g) and cations concentrations (100–500 mg/L) has shown that most biopolymeric beads can chelate 85–100% of the cations in concentrations up to 500 mg/L. According to our finding, we came up with the recommendation to use chitosan for chelation of calcium and iron as it showed 100% chelation efficiency of both cations, whereas carrageenan is highly recommended for chelation of iron and magnesium, as it showed 100 and 98% chelation efficiency, respectively. Further work can be done on the reusability of the beads and scale up for the industrial use

    Covalent immobilization of microbial naringinase using novel thermally stable biopolymer for hydrolysis of naringin

    Get PDF
    Naringinase induced from the fermented broth of marine-derived fungus Aspergillus niger was immobilized into grafted gel beads, to obtain biocatalytically active beads. The support for enzyme immobilization was characterized by ART-FTIR and TGA techniques. TGA revealed a significant improvement in the grafted gel’s thermal stability from 200 to 300 °C. Optimization of the enzyme loading capacity increased gradually by 28-fold from 32 U/g gel to 899 U/g gel beads, retaining 99 % of the enzyme immobilization efficiency and 88 % of the immobilization yield. The immobilization process highly improved the enzyme’s thermal stability from 50 to 70 °C, which is favored in food industries, and reusability test retained 100 % of the immobilized enzyme activity after 20 cycles. These results are very useful on the marketing and industrial levels
    corecore