38 research outputs found

    Effects of Irrigation Interval, Nitrogen and Phosphorus on Grain Yield and biomass of Wheat

    Get PDF
    This study was conducted for two successive seasons of 1998/1999 and 1999/2000, at the Gezira Research Station Farm, Agricultural Research Corporation, Sudan, to investigate the effects of irrigation interval, nitrogen and phosphorus levels on wheat (Triticum aestivum L.( yield and yield components. The study consisted of three irrigation intervals (7,14,21 days), three N levels (0, 43 and 86 kg N/ha) and two P levels (0 and 43 kg P205/ha). Treatments were arranged in a split-split plot design with three replications. Results showed that the irrigation intervals of 7 and 14 days had positive effects on wheat grain and total dry matter yield as compared to the 21 days irrigation interval which negatively affected these parameters. Plants of the latter treatment were dwarf with thin stems and matured earlier resulting in low grain and biomass yields. The study, also, showed that the highest wheat yield was obtained with the application of N and P at the rates of 86 kg N and 43 kg P2O5/ha, respectively, with the irrigation interval of 7 days. &nbsp

    A de novo marker chromosome derived from 9p in a patient with 9p partial duplication syndrome and autism features: genotype-phenotype correlation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies focusing on candidate genes and chromosomal regions identified several copy number variations (CNVs) associated with increased risk of autism or autism spectrum disorders (ASD).</p> <p>Case Presentation</p> <p>We describe a 17-year-old girl with autism, severe mental retardation, epilepsy, and partial 9p duplication syndrome features in whom GTG-banded chromosome analysis revealed a female karyotype with a marker chromosome in 69% of analyzed metaphases. Array CGH analysis showed that the marker chromosome originated from 9p24.3 to 9p13.1 with a gain of 38.9 Mb. This mosaic 9p duplication was detected only in the proband and not in the parents, her four unaffected siblings, or 258 ethnic controls. Apart from the marker chromosome, no other copy number variations (CNVs) were detected in the patient or her family. Detailed analysis of the duplicated region revealed: i) an area extending from 9p22.3 to 9p22.2 that was previously identified as a critical region for the 9p duplication syndrome; ii) a region extending from 9p22.1 to 9p13.1 that was previously reported to be duplicated in a normal individual; and iii) a potential ASD locus extending from 9p24.3 to 9p23. The ASD candidate locus contained 34 genes that may contribute to the autistic features in this patient.</p> <p>Conclusion</p> <p>We identified a potential ASD locus (9p24.3 to 9p23) that may encompass gene(s) contributing to autism or ASD.</p

    SLC25A22 is a novel gene for migrating partial seizures in infancy

    Get PDF
    Objective To identify a genetic cause for migrating partial seizures in infancy (MPSI). Methods We characterized a consanguineous pedigree with MPSI and obtained DNA from affected and unaffected family members. We analyzed single nucleotide polymorphism 500K data to identify regions with evidence of linkage. We performed whole exome sequencing and analyzed homozygous variants in regions of linkage to identify a candidate gene and performed functional studies of the candidate gene SLC25A22. Results In a consanguineous pedigree with 2 individuals with MPSI, we identified 2 regions of linkage, chromosome 4p16.1-p16.3 and chromosome 11p15.4-pter. Using whole exome sequencing, we identified 8 novel homozygous variants in genes in these regions. Only 1 variant, SLC25A22 c.G328C, results in a change of a highly conserved amino acid (p.G110R) and was not present in control samples. SLC25A22 encodes a glutamate transporter with strong expression in the developing brain. We show that the specific G110R mutation, located in a transmembrane domain of the protein, disrupts mitochondrial glutamate transport. Interpretation We have shown that MPSI can be inherited and have identified a novel homozygous mutation in SLC25A22 in the affected individuals. Our data strongly suggest that SLC25A22 is responsible for MPSI, a severe condition with few known etiologies. We have demonstrated that a combination of linkage analysis and whole exome sequencing can be used for disease gene discovery. Finally, as SLC25A22 had been implicated in the distinct syndrome of neonatal epilepsy with suppression bursts on electroencephalogram, we have expanded the phenotypic spectrum associated with SLC25A22. Ann Neurol 2013;74:873-882 © 2013 American Neurological Association

    Ophthalmic features of PLA2G6-related paediatric neurodegeneration with brain iron accumulation.

    No full text
    BACKGROUND: Neurodegeneration with brain iron accumulation (NBIA) refers to genetically heterogenous paediatric neurodegenerative disorders characterised by basal ganglia iron deposition. One major cause is recessive mutations in the PLA2G6 gene. While strabismus and optic nerve pallor have been reported for PLA2G6-related disease, the ophthalmic phenotype is not carefully defined. In this study we characterise the ophthalmic phenotype of PLA2G6-related NBIA. METHODS: Prospective cohort study. RESULTS: The eight patients were 4-26 years old when examined. All had progressive cognitive and motor regression first noted between 9 months and 6 years of age that typically first manifested as difficulty walking (ataxia). Ophthalmic examination was sometimes limited by cognitive ability. Four of eight had exotropia, 7/7 bilateral supraduction defect, 5/7 poor convergence, 6/8 saccadic pursuit, 4/8 saccadic intrusions that resembled square-wave jerks, and 8/8 bilateral optic nerve head pallor. All patients lacked Bell phenomenon. CONCLUSIONS: Upgaze palsy, although not a previously reported finding, was confirmed in all patients (except in one for whom assessment could not be performed) and thus can be considered part of the phenotype in children and young adults. Other frequent findings not previously highlighted were abnormal convergence, saccadic pursuit, and saccadic intrusions. Optic nerve head pallor and strabismus, previously reported findings in the disease, were found in 100% and 50% of our cohort, respectively, and the strabismus in our series was always exotropia. Taken together, these clinical findings may be helpful in distinguishing PLA2G6-related neurodegeneration from the other major cause of NBIA, recessive PANK2 mutations

    New Findings in a Global Approach to Dissect the Whole Phenotype of PLA2G6 Gene Mutations.

    Get PDF
    Mutations in PLA2G6 gene have variable phenotypic outcome including infantile neuroaxonal dystrophy, atypical neuroaxonal dystrophy, idiopathic neurodegeneration with brain iron accumulation and Karak syndrome. The cause of this phenotypic variation is so far unknown which impairs both genetic diagnosis and appropriate family counseling. We report detailed clinical, electrophysiological, neuroimaging, histologic, biochemical and genetic characterization of 11 patients, from 6 consanguineous families, who were followed for a period of up to 17 years. Cerebellar atrophy was constant and the earliest feature of the disease preceding brain iron accumulation, leading to the provisional diagnosis of a recessive progressive ataxia in these patients. Ultrastructural characterization of patients' muscle biopsies revealed focal accumulation of granular and membranous material possibly resulting from defective membrane homeostasis caused by disrupted PLA2G6 function. Enzyme studies in one of these muscle biopsies provided evidence for a relatively low mitochondrial content, which is compatible with the structural mitochondrial alterations seen by electron microscopy. Genetic characterization of 11 patients led to the identification of six underlying PLA2G6 gene mutations, five of which are novel. Importantly, by combining clinical and genetic data we have observed that while the phenotype of neurodegeneration associated with PLA2G6 mutations is variable in this cohort of patients belonging to the same ethnic background, it is partially influenced by the genotype, considering the age at onset and the functional disability criteria. Molecular testing for PLA2G6 mutations is, therefore, indicated in childhood-onset ataxia syndromes, if neuroimaging shows cerebellar atrophy with or without evidence of iron accumulation

    A newly recognized autosomal recessive syndrome affecting neurologic function and vision

    No full text
    Genetic factors represent an important etiologic group in the causation of intellectual disability. We describe a Saudi Arabian family with closley related parents in which four of six children were affected by a congenital cognitive disturbance. The four individuals (aged 18, 16, 13, and 2 years when last examined) had motor and cognitive delay with seizures in early childhood, and three of the four (sparing only the youngest child) had progressive, severe cognitive decline with spasticity. Two affected children had ocular malformations, and the three older children had progressive visual loss. The youngest had normal globes with good functional vision when last examined but exhibited the oculodigital sign, which may signify a subclinical visual deficit. A potentially deleterious nucleotide change (c.1A>G; p.Met1Val) in the C12orf57 gene was homozygous in all affected individuals, heterozygous in the parents, and absent in an unaffected sibling and >350 normal individuals. This gene has no known function. This family manifests a autosomal recessive syndrome with some phenotypic variability that includes abnormal development of brain and eyes, delayed cognitive and motor milestones, seizures, and a severe cognitive and visual decline that is associated with a homozygous variant in a newly identified gene

    A new form of childhood onset, autosomal recessive spinocerebellar ataxia and epilepsy is localized at 16q21-q23.

    No full text
    Childhood ataxias are a complex set of inherited disorders. Ataxias associated with generalized tonic-clonic epilepsy are usually included with the progressive myoclonus epilepsies (PME). Five disease entities, Unverricht-Lundborg disease, Lafora's disease, neuronal ceroid lipofuscinoses, myoclonic epilepsy with ragged red fibres and sialidoses, account for the majority of PME cases. Two rare forms of ataxia plus epilepsy, sensory ataxic neuropathy, dysarthria and ophthalmoparesis, and infantile onset spinocerebellar ataxia were described recently and found to be caused by defective mitochondrial proteins. We report here a large consanguineous family from Saudi Arabia with four affected children presenting with generalized tonic-clonic epilepsy, ataxia and mental retardation, but neither myoclonus nor mental deterioration. MRI and muscle biopsy of one patient revealed, respectively, posterior white matter hyperintensities and vacuolization of the sarcotubular system. We localized the defective gene by homozygosity mapping to a 19 Mb interval in 16q21-q23 between markers D16S3091 and D16S3050. Linkage studies in this region will allow testing for homogeneity of this novel ataxia-epilepsy entity
    corecore