9 research outputs found

    Hierarchical prediction of registration misalignment using a convolutional LSTM: application to chest CT scans

    Get PDF
    In this paper we propose a supervised method to predict registration misalignment using convolutional neural networks (CNNs). This task is casted to a classification problem with multiple classes of misalignment: "correct" 0-3 mm, "poor" 3-6 mm and "wrong" over 6 mm. Rather than a direct prediction, we propose a hierarchical approach, where the prediction is gradually refined from coarse to fine. Our solution is based on a convolutional Long Short-Term Memory (LSTM), using hierarchical misalignment predictions on three resolutions of the image pair, leveraging the intrinsic strengths of an LSTM for this problem. The convolutional LSTM is trained on a set of artificially generated image pairs obtained from artificial displacement vector fields (DVFs). Results on chest CT scans show that incorporating multi-resolution information, and the hierarchical use via an LSTM for this, leads to overall better F1 scores, with fewer misclassifications in a well-tuned registration setup. The final system yields an accuracy of 87.1%, and an average F1 score of 66.4% aggregated in two independent chest CT scan studies.Radiolog

    Joint registration and segmentation via multi-task learning for adaptive radiotherapy of prostate cancer

    Get PDF
    Medical image registration and segmentation are two of the most frequent tasks in medical image analysis. As these tasks are complementary and correlated, it would be beneficial to apply them simultaneously in a joint manner. In this paper, we formulate registration and segmentation as a joint problem via a Multi-Task Learning (MTL) setting, allowing these tasks to leverage their strengths and mitigate their weaknesses through the sharing of beneficial information. We propose to merge these tasks not only on the loss level, but on the architectural level as well. We studied this approach in the context of adaptive image-guided radiotherapy for prostate cancer, where planning and follow-up CT images as well as their corresponding contours are available for training. At testing time the contours of the follow-up scans are not available, which is a common scenario in adaptive radiotherapy. The study involves two datasets from different manufacturers and institutes. The first dataset was divided into training (12 patients) and validation (6 patients), and was used to optimize and validate the methodology, while the second dataset (14 patients) was used as an independent test set. We carried out an extensive quantitative comparison between the quality of the automatically generated contours from different network architectures as well as loss weighting methods. Moreover, we evaluated the quality of the generated deformation vector field (DVF). We show that MTL algorithms outperform their Single-Task Learning (STL) counterparts and achieve better generalization on the independent test set. The best algorithm achieved a mean surface distance of 1.06 +/- 0.3 mm, 1.27 +/- 0.4 mm, 0.91 +/- 0.4 mm, and 1.76 +/- 0.8 mm on the validation set for the prostate, seminal vesicles, bladder, and rectum, respectively. The high accuracy of the proposed method combined with the fast inference speed, makes it a promising method for automatic re-contouring of follow-up scans for adaptive radiotherapy, potentially reducing treatment related complications and therefore improving patients quality-of-life after treatment. The source code is available at https://github.com/moelmahdy/JRS-MTL.Biological, physical and clinical aspects of cancer treatment with ionising radiatio

    Esophageal tumor segmentation in CT images using a Dilated Dense Attention Unet (DDAUnet)

    Get PDF
    Manual or automatic delineation of the esophageal tumor in CT images is known to be very challenging. This is due to the low contrast between the tumor and adjacent tissues, the anatomical variation of the esophagus, as well as the occasional presence of foreign bodies (e.g. feeding tubes). Physicians therefore usually exploit additional knowledge such as endoscopic findings, clinical history, additional imaging modalities like PET scans. Achieving his additional information is time-consuming, while the results are error-prone and might lead to non-deterministic results. In this paper we aim to investigate if and to what extent a simplified clinical workflow based on CT alone, allows one to automatically segment the esophageal tumor with sufficient quality. For this purpose, we present a fully automatic end-to-end esophageal tumor segmentation method based on convolutional neural networks (CNNs). The proposed network, called Dilated Dense Attention Unet (DDAUnet), leverages spatial and channel attention gates in each dense block to selectively concentrate on determinant feature maps and regions. Dilated convolutional layers are used to manage GPU memory and increase the network receptive field. We collected a dataset of 792 scans from 288 distinct patients including varying anatomies with air pockets, feeding tubes and proximal tumors. Repeatability and reproducibility studies were conducted for three distinct splits of training and validation sets. The proposed network achieved a DSC value of 0.79 +/- 0.20, a mean surface distance of 5.4 +/- 20.2mm and 95% Hausdorff distance of 14.7 +/- 25.0mm for 287 test scans, demonstrating promising results with a simplified clinical workflow based on CT alone. Our code is publicly available via https://github.com/yousefis/DenseUnet_Esophagus_Segmentation.Biological, physical and clinical aspects of cancer treatment with ionising radiatio

    Robust contour propagation using deep learning and image registration for online adaptive proton therapy of prostate cancer

    Get PDF
    Purpose To develop and validate a robust and accurate registration pipeline for automatic contour propagation for online adaptive Intensity‐Modulated Proton Therapy (IMPT) of prostate cancer using elastix software and deep learning. Methods A three‐dimensional (3D) Convolutional Neural Network was trained for automatic bladder segmentation of the computed tomography (CT) scans. The automatic bladder segmentation alongside the computed tomography (CT) scan is jointly optimized to add explicit knowledge about the underlying anatomy to the registration algorithm. We included three datasets from different institutes and CT manufacturers. The first was used for training and testing the ConvNet, where the second and the third were used for evaluation of the proposed pipeline. The system performance was quantified geometrically using the dice similarity coefficient (DSC), the mean surface distance (MSD), and the 95% Hausdorff distance (HD). The propagated contours were validated clinically through generating the associated IMPT plans and compare it with the IMPT plans based on the manual delineations. Propagated contours were considered clinically acceptable if their treatment plans met the dosimetric coverage constraints on the manual contours. Results The bladder segmentation network achieved a DSC of 88% and 82% on the test datasets. The proposed registration pipeline achieved a MSD of 1.29 ± 0.39, 1.48 ± 1.16, and 1.49 ± 0.44 mm for the prostate, seminal vesicles, and lymph nodes, respectively, on the second dataset and a MSD of 2.31 ± 1.92 and 1.76 ± 1.39 mm for the prostate and seminal vesicles on the third dataset. The automatically propagated contours met the dose coverage constraints in 86%, 91%, and 99% of the cases for the prostate, seminal vesicles, and lymph nodes, respectively. A Conservative Success Rate (CSR) of 80% was obtained, compared to 65% when only using intensity‐based registration. Conclusion The proposed registration pipeline obtained highly promising results for generating treatment plans adapted to the daily anatomy. With 80% of the automatically generated treatment plans directly usable without manual correction, a substantial improvement in system robustness was reached compared to a previous approach. The proposed method therefore facilitates more precise proton therapy of prostate cancer, potentially leading to fewer treatment‐related adverse side effects

    Remediation of Cd and Cu contaminated water and soil using novel nanomaterials derived from sugar beet processing- and clay brick factory-solid wastes

    No full text
    Producing nanomaterials from hazardous wastes for water and soil treatment is of great concern. Here, we produced and fully characterized two novel nanomaterials from sugar beet processing (SBR)- and brick factory-residuals (BFR) and assed their ability for Cd and Cu sorption in water and reducing metal availability in a contaminated soil. The SBR removed up to 99% of Cu and 91% of Cd in water, and exhibited a significantly faster and higher sorption capacity (qmax (g kg−1) = 1111.1 for Cu and 33.3 for Cd) than BFR (qmax (g kg−1) = 33.3 for Cu and 10.0 for Cd), even at acidic pH. Soil metal availability was significantly reduced by SBR (up to 57% for Cu and 86% for Cd) and BFR (up to 36% for Cu and 68% for Cd) compared to the unamended soil. The higher removal efficacy of SBR over BFR could be attributed to its higher alkalinity (pH = 12.5), carbonate content (82%), and specific surface area, as well as the activity of hydroxyl –OH and Si-O groups. The nano-scale SBR and BFR, the former particularly, are novel, of low cost, and environmental friendly amendments that can be used for the remediation of metal-contaminated water and soil. © 2022 Elsevier B.V

    An Adaptive Intelligence Algorithm for Undersampled Knee MRI Reconstruction

    No full text
    Adaptive intelligence aims at empowering machine learning techniques with the additional use of domain knowledge. In this work, we present the application of adaptive intelligence to accelerate MR acquisition. Starting from undersampled k-space data, an iterative learning-based reconstruction scheme inspired by compressed sensing theory is used to reconstruct the images. We developed a novel deep neural network to refine and correct prior reconstruction assumptions given the training data. The network was trained and tested on a knee MRI dataset from the 2019 fastMRI challenge organized by Facebook AI Research and NYU Langone Health. All submissions to the challenge were initially ranked based on similarity with a known groundtruth, after which the top 4 submissions were evaluated radiologically. Our method was evaluated by the fastMRI organizers on an independent challenge dataset. It ranked #1, shared #1, and #3 on respectively the 8x accelerated multi-coil, the 4x multi-coil, and the 4x single-coil tracks. This demonstrates the superior performance and wide applicability of the method.Radiolog

    Global variation in postoperative mortality and complications after cancer surgery: a multicentre, prospective cohort study in 82 countries

    No full text
    © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 licenseBackground: 80% of individuals with cancer will require a surgical procedure, yet little comparative data exist on early outcomes in low-income and middle-income countries (LMICs). We compared postoperative outcomes in breast, colorectal, and gastric cancer surgery in hospitals worldwide, focusing on the effect of disease stage and complications on postoperative mortality. Methods: This was a multicentre, international prospective cohort study of consecutive adult patients undergoing surgery for primary breast, colorectal, or gastric cancer requiring a skin incision done under general or neuraxial anaesthesia. The primary outcome was death or major complication within 30 days of surgery. Multilevel logistic regression determined relationships within three-level nested models of patients within hospitals and countries. Hospital-level infrastructure effects were explored with three-way mediation analyses. This study was registered with ClinicalTrials.gov, NCT03471494. Findings: Between April 1, 2018, and Jan 31, 2019, we enrolled 15 958 patients from 428 hospitals in 82 countries (high income 9106 patients, 31 countries; upper-middle income 2721 patients, 23 countries; or lower-middle income 4131 patients, 28 countries). Patients in LMICs presented with more advanced disease compared with patients in high-income countries. 30-day mortality was higher for gastric cancer in low-income or lower-middle-income countries (adjusted odds ratio 3·72, 95% CI 1·70–8·16) and for colorectal cancer in low-income or lower-middle-income countries (4·59, 2·39–8·80) and upper-middle-income countries (2·06, 1·11–3·83). No difference in 30-day mortality was seen in breast cancer. The proportion of patients who died after a major complication was greatest in low-income or lower-middle-income countries (6·15, 3·26–11·59) and upper-middle-income countries (3·89, 2·08–7·29). Postoperative death after complications was partly explained by patient factors (60%) and partly by hospital or country (40%). The absence of consistently available postoperative care facilities was associated with seven to 10 more deaths per 100 major complications in LMICs. Cancer stage alone explained little of the early variation in mortality or postoperative complications. Interpretation: Higher levels of mortality after cancer surgery in LMICs was not fully explained by later presentation of disease. The capacity to rescue patients from surgical complications is a tangible opportunity for meaningful intervention. Early death after cancer surgery might be reduced by policies focusing on strengthening perioperative care systems to detect and intervene in common complications. Funding: National Institute for Health Research Global Health Research Unit

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    No full text
    © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseBackground: Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide. Methods: A multimethods analysis was performed as part of the GlobalSurg 3 study—a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital. Findings: Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3·85 [95% CI 2·58–5·75]; p<0·0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63·0% vs 82·7%; OR 0·35 [0·23–0·53]; p<0·0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer. Interpretation: Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised. Funding: National Institute for Health and Care Research

    Glass-Forming Substances and Systems

    No full text
    corecore