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ABSTRACT Manual or automatic delineation of the esophageal tumor in CT images is known to be
very challenging. This is due to the low contrast between the tumor and adjacent tissues, the anatomical
variation of the esophagus, as well as the occasional presence of foreign bodies (e.g. feeding tubes).
Physicians therefore usually exploit additional knowledge such as endoscopic findings, clinical history,
additional imaging modalities like PET scans. Achieving his additional information is time-consuming,
while the results are error-prone and might lead to non-deterministic results. In this paper we aim
to investigate if and to what extent a simplified clinical workflow based on CT alone, allows one to
automatically segment the esophageal tumor with sufficient quality. For this purpose, we present a fully
automatic end-to-end esophageal tumor segmentation method based on convolutional neural networks
(CNNs). The proposed network, called Dilated Dense Attention Unet (DDAUnet), leverages spatial and
channel attention gates in each dense block to selectively concentrate on determinant feature maps and
regions. Dilated convolutional layers are used to manage GPU memory and increase the network receptive
field. We collected a dataset of 792 scans from 288 distinct patients including varying anatomies with
air pockets, feeding tubes and proximal tumors. Repeatability and reproducibility studies were conducted
for three distinct splits of training and validation sets. The proposed network achieved a DSC value of
0.79±0.20, a mean surface distance of 5.4±20.2mm and 95% Hausdorff distance of 14.7±25.0mm for
287 test scans, demonstrating promising results with a simplified clinical workflow based on CT alone.
Our code is publicly available via https://github.com/yousefis/DenseUnet_Esophagus_Segmentation.

INDEX TERMS Esophageal tumor segmentation, CT images, densely connected pattern, UNet, dilated
convolutional layer, attention gate

I. INTRODUCTION
Esophageal cancer is one of the least studied cancers [1],
while it is lethal in most patients [2]. Because of the
very poor survival rate, three standard treatment options
are available, i.e. chemoradiotherapy (CRT), neoadjuvant
CRT followed by surgical resection, or radical radiotherapy
[3]. For this purpose, rapid and accurate delineation of the
target volume in CT images plays a very important role
in therapy and disease control. The complexities raised by

automatic esophageal tumor delineation in CT images can
be divided into several categories: textural similarities and
the absence of contrast between the tumor and its adjacent
tissues; the anatomical variation of different patients either
intrinsically or caused by a disease, like a hiatal hernia
in which part of the stomach bulges into the chest cavity
through an opening of the diaphragm (see Figure 1-(e) and
(i)), extension of tumor into the stomach, or existence of
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air pocket inside the esophagus; existence of foreign bodies
during the treatment, like a feeding tube or surgical clips
inside the esophageal lumen. Figure 1 illustrates some of the
challenging cases. These difficulties lead to a high degree of
uncertainty associated with the target volume of the tumor,
especially at the cranial and caudal border of the tumor [4].
In order to overcome these complexities, physicians inte-
grate CT imaging with the clinical history, endoscopic find-
ings, endoscopic ultrasound, and other imaging modalities
such as positron-emission tomography (PET) [5]. Obtaining
these additional modalities is however a time-consuming
and expensive process. Moreover, the process of manual
delineation is a repetitive and tedious task, and often there
is a lack of consensus on how to best segment the tumor
from normal tissue. Despite using additional modalities and
expert knowledge, the process of manual delineation still
remains an ill-posed problem [6]. Nowee et al. [4] assessed
manual delineation variability of gross tumor volume (GTV)
between using CT and combined F-fluorodeoxyglucose PET
(FDG-PET) [7] and CT in esophageal cancer patients in a
multi-institutional study by 20 observers. They concluded
that the use of PET images can significantly influence the
delineated volume in some cases, however its impact on
observer variation is limited.

In this paper we aim to investigate if a simplified clinical
workflow based on CT scans alone allows to automatically
delineate the esophageal GTV with acceptable quality. Re-
cently, there has been a revived interest in automating this
process for both the esophagus and the esophageal tumor
based on CT images alone [8], [9], [10]. Our earlier work
[11], leveraged the idea of dense blocks proposed by [12],
arranging them in a typical U-shape. In that study, the
proposed method was trained and tested on 553 chest CT
scans from 49 distinct patients and achieved a DSC value
of 0.73 ± 0.20, and a 95% mean surface distance (MSD)
of 3.07± 1.86 mm for the test scans. Eight of the 85 scans
in the test set had a DSC value lower than 0.50, caused
by the presence of air cavities and foreign bodies in the
GTV, which was rarely seen in the training data. In order to
enhance the robustness of the network, in the present study
we extended that work. The main contributions of this paper
are as follows:

1) We propose an end-to-end CNN for esophageal GTV
segmentation on CT scans. Different from much of the
previous work, which addressed segmentation of the
esophagus itself, we focus on the more challenging
tumor area (GTV). The proposed method is end-to-end,
without intricate pre- or post-processing steps, and uses
no information in addition to the CT scans;

2) We introduce dilated dense attention blocks which
leverage spatial and channel attention to emphasize on
the GTV related features. Also, dilation layers are used
to support an exponential expansion of the receptive
field while keeping the size of the network fixed;

3) We collected a dataset of 228 distinct patients

(792 scans). The dataset includes different varieties
of anatomies, and presence of foreign bodies and
air pockets in the esophageal lumen. In this study,
all patients received either Neoadjuvant or definitive
chemoradiotherapy treatment options. To the best of
our knowledge, none of the related works have ad-
dressed such a comprehensive dataset.

The initial results of this work were presented in [11]. The
current paper includes a larger and more diverse dataset,
and more elaborate evaluation. Also, we leverage dilated
convolutional layers in order to increase the receptive field
without increasing the size of the network, and attention
gates [13] to filter tumor relevant features.

II. RELATED WORK
Most automatic esophagus segmentation approaches have
used either a shape or appearance model to guide the
segmentation, where training such a guidance model is
complicated. Rousson et al. proposed a two-stage proba-
bilistic shortest path approach to segment the esophagus
from 2D CT images [6]. In the first stage, the aorta and
left atrium are segmented and then registered to reference
shapes in order to find a region of interest (ROI). In the
second stage, the optimal esophagus centerline is extracted
using the shortest path algorithm. Fieselmann et al. proposed
an automatic approach for segmenting the esophagus by
detecting the air cavities that often constitute the esophagus
[14]. For reducing the time complexity, they confined all
the computations to an ROI. Also, they proposed another
method based on spatially-constrained shape interpolation
in order to segment the esophagus in 2D CT images [15].
In that investigation, two assumptions are considered: the
shape of the esophagus changes smoothly, and there is no
intersection between the esophagus and the other organs.

In [16] a multi-step approach based on probabilistic
models has been proposed to segment the esophagus on 3D
CT scans. In that work, a pre-processing step is used to
extract an ROI. Then, a discriminative learning technique is
applied to label the voxels. In [17] an optical flow approach
for semi-automated segmentation of CT images is used,
where manually drawn curvature points are extended to
contours by Fourier interpolation and afterwards, optical
flow is used for registering the original contour to the other
slices. This method is not only highly user-interactive but
it also fails when the region to contour is topologically
different between two slices. Feulner et al. proposed a multi-
step approach based on probabilistic models for automatic
segmentation of the esophagus in 3D CT scans [18]. In
that work, by running a discriminative model for each
axial slice, a set of approximated esophagus contours is
extracted. Then, the contours are clustered and merged and
afterwards, a Markov chain model is used for finding the
most probable path through the axial slices. Ultimately,
another discriminative model is used for refining the result.
This approach just works for a manually selected ROI. The
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIGURE 1: Variations in shape and location of the tumor. Green contours show the manual delineation of the GTVs. (a)
normal junction of esophagus and stomach, (b) hiatal hernia (type I): migration of esophagogastric junction through the gap
in the cranial direction, (c) hiatal hernia (type II): migration of esophagogastric junction in the chest, (d) proximal tumor
including an air pocket and feeding tube, (e) proximal tumor including an air pocket, (f) tumor including an air pocket,
(g,h) junction tumor (extension of the tumor into the stomach) including an air pocket, (i) tumor including an air pocket
and feeding tube, (j) relocation of the esophagus to the left of aorta, (k) a variety in the shape of the tumor, (l) junction
tumor including an air pocket.

manual selection of an ROI was later extended to automatic
ROI detection by a salient landmark on the chest [19].

Kurugol et al. presented a 3D level set model for segment-
ing the esophagus over the entire thoracic range employing
a shape model, with a global and a locally deformable
component [20]. In their work, an initial centerline esti-
mation is required where an ad-hoc centerline estimator
was used, which was only performed at the ROI of some
predefined anatomical landmarks followed by interpolation
for the remaining slices. Later, they extended their work by
using prior spatial and appearance models estimated from
the training set instead of using the ad hoc estimator [21]. In
[22], a two-phase online atlas-based approach was proposed
to rank and select a subset of optimal atlas candidates for
segmentation of the esophagus on CT scans. Atlas-based
approaches face some restrictions including the selection of
optimal atlases and a correct representation of the study
population.

Deep learning for medical image analysis has aroused
broad attention in recent years [23], [24], [25]. However,
this technique has been limitedly used for esophagus seg-
mentation and even less for esophageal tumor segmentation.
In [26], a fully convolutional neural network (FCNN) for
segmenting the esophagus on 3D CT was proposed, sur-

rounded the bottom-most of the heart and the topmost of the
stomach. For refining the results, an active contour model
and a random walker were used as post-processing steps.
In that study, 50 scans were used as the training set and 20
scans as the test set. An average DSC value of 0.76 ± 0.11
for the test set was reported. A semi-automatic two-stage
FCNN for 2D esophagus segmentation has been proposed
by Trullo et al. [27]. The first stage performs a multi-
organ segmentation in order to extract an ROI including
the esophagus. Then the manually cropped ROI is fed to
the second network to segment the esophagus. A DSC
value of 0.72 ± 0.07 has been reported for this network
with 25 scans as the training set and 30 scans as the
testing set. For extracting the largest possible tumor region
in 2D CT scans an FCNN was used by Hao et al. [23].
Then they applied a graph cut for segmenting the tumor.
They reported an average DSC value of 0.75 ± 0.04 for
the four patients in the test set. Jin et al. [8] introduced
a spatial-context encoded deep esophageal clinical target
volume (CTV) delineation framework to produce superior
margin-based CTV boundaries. That work in an expensive
pre-processing step encodes spatial context by computing
the signed distance transform maps (SDMs) of the GTV,
lymph nodes (LNs) and organs at risks (OARs) and then
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feeds the results with the CT image into a 3D CNN. In
another work Jin et al. [28] proposed a two-stream chained
3D CNN fusion pipeline to segment esophageal GTVs
using both CT and PET+CT scans. They evaluated their
approach by conducting a 5-fold cross validation on scans
of 110 patients. They reported that using PET images as
complementary information can improve the DSC score
from 0.73±0.16 to 0.76±0.13. Although reasonable results
can be obtained in the approaches mentioned earlier, the
problem of esophageal GTV segmentation in CT modalities
without extra knowledge constraining the problem is known
as an ill-posed problem and remains challenging [9].

Most of the mentioned works addressed esophagus seg-
mentation and not esophageal tumor segmentation. How-
ever, esophageal tumor segmentation is a more complicated
task due to the poor contrast of the tumor with respect to its
adjacent tissues. It is especially difficult to define the start
and end of the tumor without additional information such
as endoscopic findings.

III. THE PROPOSED METHOD
A. NETWORK ARCHITECTURE
Figure 2 shows a schematic of the proposed network,
dubbed dilated dense attention Unet (DDAUnet). The net-
work is composed of three levels, a down-sampling path for
extracting contextual features and an up-sampling path for
retrieving the lost resolution during extraction. In each level,
different from our prior work [11], we used dilated dense
spatial and channel attention blocks (DDSCAB) which is
composed of a dilated dense block (DDB) and a spatial
attention gate and a channel attention gate which are de-
noted SpA and ChA1. Using loop connectivity patterns
between the layers in the DDSCAB blocks provide a deep
supervision by re-using the feature maps, while dilated
layers increase the receptive field exponentially without any
additional parameters. Spatial attention gates are used in
the main building blocks, and encourage the network to
concentrate on extracting features from the tumor adja-
cency. The channel attention gates are used in the skip
connections between the contracting and expanding paths
of the Unet (named ChA2), for filtering irrelevant feature
maps to improve the training process. The proposed network
DDAUnet does not include ChA1, and this block is only
used in some of the experiments during the optimization of
the network configuration. In section IV the performance
of DDAUnet will be compared with DUnet [11], dilated
dense unet (DDUnet) which is DUnet with dilated convolu-
tional layers in the dense blocks, DDAUnet without ChA2,
i.e. DDAUnet-noChA2, DDAUnet with ChA1 and without
SpA and ChA2, i.e. DDAUnet-noSpA-plusChA1-noChA2,
DDAUnet with ChA1 and without ChA2, i.e. DDAUnet-
plusChA1-noChA2.

According to [29], the incorporation of a stack of con-
volutional layers with small receptive fields in the first
layers rather than few layers with large receptive fields
decreases the number of the parameters, increases non-

linearity of the network, and consequently makes train-
ing of the network easier. These layers aid the net-
work to extract significant features before applying con-
volutional operations with a wider receptive field in
DDSCAB. Therefore, the network starts with two consec-
utive (3× 3× 3)convd=1,p=true + BN + ReLU, in which
3 × 3 × 3, d and p indicate the kernel size, dilation factor
and padding of the convolutional layer respectively. Also,
BN and ReLU denote batch normalization and a Rectified
linear unit layer, respectively.

Afterward, the network is followed by a DDSCAB com-
posed of a dilated dense block (DDB) and spatial and
channel attention gates. For each DDB, R is the number
of sub-DDBs. In each sub-DDB, there are R number of
(3× 3× 3)convd=2,p=true + BN + ReLU and R number of
(1× 1× 1)convd=1,p=true + BN + ReLU layers. The out-
put of a DDB is the concatenation of all preceding sub-
DDBs. In our prior work, it has been shown that the loop
connectivity patterns in dense blocks assist the network to
perform better [11]. In the DDBs, (1 × 1 × 1)conv layers
are used as bottleneck layers, which compress the number
of feature maps and thus improve computational efficiency
[12]. In this paper, the feature maps in each DDB are
compressed by a compression coefficient of θ. The output
of DDB then is fed to spatial and channel attention gates in
order to selectively filter the GTV irrelevant spatial features
and feature maps respectively, which leads to improving the
training process. In the down-sampling path, the DDSCABs
are followed by (1× 1× 1)convd=1,p=true + BN + ReLU.
Using 1 × 1 × 1 convolutional layers does not affect the
receptive field of the network, however, increases the non-
linearity in between layers [30]. At the end of down-
sampling path and in the up-sampling path every DDSCAB
is followed by (3× 3× 3)convd=1 + BN + ReLU. In Sec-
tion IV we will investigate the effect of deploying spatial and
channel gates in DDSCAB and will see that utilizing only
the spatial gate is more effective. Also, the skip connections
between the contracting and expanding path are equipped
by channel attention gates to filter the irrelevant feature
maps. Later we will show that leveraging the spatial and
channel attention gates aid the network to end up with
better segmentation results. The network is finalized by a
convolutional layer with linear activation and a soft-max
layer to compute a probabilistic output. The probabilistic
output can be classified as tumor and non-tumor regions.
The skip connections between the down-sampling and up-
sampling paths demonstrate cropped concatenation of the
feature maps of the corresponding down-sampling levels and
up-sampling levels.

B. LOSS FUNCTION
In this work, similar to our prior work [11] we used the
Dice coefficient as our main loss function [31]:

DSCGTV =
2
∑N
i sigi∑N

i s
2
i +

∑N
i g

2
i

, (1)
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Transposed convolution layer
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(R)
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FIGURE 2: The architecture of the proposed method. DDSCAB and DDB stand for dilated dense spatial and channel
attention block and dilated dense block, respectively. R is the number of sub-DDBs. ChA1, ChA2, and SpA denote channel
attention gate located on skip connections, channel attention inside the DDSCAB block, and spatial attention gates inside
DDSCAB. ChA1, shown transparently here, is not included in the final network (DDAUnet), but is used in some of the
experiments.

where si ∈ S is the binary segmentation of the GTV
predicted by the network and gi ∈ G is the ground truth
segmentation. We investigated different combinations of loss
functions including boundary loss [32], distance map loss
[33], and focal Dice [34]. In [32] it is shown that the
boundary loss can be approximated by:

LB(θ) =
∫
ω

φG(q)sθ(q)dq, (2)

where φG and sθ denote the level set representation of the
boundary of ground truth, and network output, respectively.
The traditional loss functions like Dice are based on inte-
grals over the segmentation regions [32]. In this work we
leverage the boundary loss function to aid the network to
also focus on the outer contours. In Section IV it will be
discussed that the combination of Dice and boundary loss
works the best for this problem.

IV. DATA, TRAINING DETAILS AND EVALUATION
A. DATASET
All patients of this study received one of the following two
treatments:

(A) Neoadjuvant chemo-radiotherapy (CRT) followed by
surgical resection. The radiotherapy is 23 × 1.8 Gy,
5 fractions a week. The external beam radiotherapy
consisted of 23 fractions of 1.8 Gy, five fractions per
week. Concurrent chemotherapy consisted of 5 weekly
administrations of carboplatin and paclitaxel.

(B) If patients are inoperable (proximal tumors they receive
primary/definitive chemoradiotherapy (CRT). The ex-
ternal beam radiotherapy consisted of 28 fractions of
1.8 Gy, five fractions per week. Concurrent chemother-
apy consisted of 6 weekly administrations of carbo-
platin and paclitaxel.

The dataset used in this study consists of 288 distinct
patients acquired for a study approved by the Medical Ethics
Review Committee of Leiden University Medical Center, the
Netherlands. The dataset includes two sub-datasets from 21
and 267 patients, respectively, in which each patient received
either treatment plan A or B. The data acquisition was per-
formed with a Brilliance Big Bore scanner (Philips Health-
care, Best,Holland) and the delineation process was done
by Pinnacle3, (version 9.6–9.8; Philips Radiation Oncology
Systems, Fitchburg, WI.) treatment planning software. The
ground truth segmentation was performed by the MD on
2D axial slices and evaluated on the 3D cardinal planes.
Table 1 tabulates the details of the datasets. The first dataset
includes five repeat CT scans acquired at different time
points. Three time-points contain only one 3D CT scan,
and two time-points include one 3D CT scan and one 4D
CT scan, composed of 10 breathing phases. Each subdataset
includes a corresponding esophageal GTV segmentation for
each CT scan, which has been delineated by one (dataset I)
or multiple (dataset II) experienced physicians. Each scan
contains 58-108 slices with an image resolution of 512×512
pixels and an average voxel thickness of 0.98×0.98×3mm3,
and were re-sampled to a voxel size of 1 × 1 × 3mm3 in
this study.

B. TRAINING DETAILS
In this work, the proposed network, which contains 651,098
trainable parameters, has been implemented in Google’s
Tensorflow and the experiments are carried out using a
NVIDIA Quadro RTX6000 with 24 GB of GPU mem-
ory. For all networks, the patch extraction process has
been implemented by multi-threaded programming in which
fetching the images into RAM, extracting the patches from
the fetched images and feeding the extracted patches to the
GPU are done concurrently. The multi-threading technique

VOLUME 4, 2016 5



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3096270, IEEE Access

VOL. XX, NO. XX, XXXX 2020

TABLE 1: Details of the dataset

dataset # of patients # of scans Type Time period Treatment plan

I 21 (A) 525
5 time-points

2012-2014 A: Neoadj. CRT2 time-points: 3D scans
3 time-points: 3D + 4D scans

II 162 (A) + 105 (B) 267 3D 2014-2019 A: Neoadj. CRT
B: def. CRT

speeds up the patch extraction process. The input patches
have been augmented by white noise extracted from a
Gaussian distribution of N(µ′, σ′), in which µ′ = 0 is the
mean of the distribution and σ′ is the standard deviation,
which is selected randomly between 0 and 5. During the
test process, the fully convolutional nature of the network
is used, with zero padding to yield equal output size. For
managing the GPU memory with a larger input patch, we
use a batch size of seven.

For designing the best configuration of the network, we
perform experiments comparing different architectures and
loss functions. Since the size of our dataset was relatively
large with 792 scans, this led to a training time of 6 days.
For this reason, similar to [35], [24], [36], we adopted a
3-fold Monte Carlo cross-validation approach [37] in this
study. Hence, the datasets I and II are divided randomly
into three distinct sets detailed in Table 2. The optimization
of the network is performed on the validation set. The
test set is excluded from the model optimization and kept
independently for the final evaluation. After choosing the
best configuration of the network, the final model is trained
for two more random splits of the training and validation
sets, resulting in three trained models. At the end, an average
of the final results for the chosen network, trained on three
splits, is reported on the test set.

In Section V the optimization of the network configura-
tion will be discussed on the validation set. Then the best
network is trained by different linear combinations of the
loss functions including Dice, boundary loss, distance map,
and Focal loss. Then in Section V-B, for reproducibility,
the results of the best configuration of the network will be
reported for two more distinct and random splits.

TABLE 2: Data split into training, validation and testing
sets. P and S denote distinct patients and scans.

dataset # of P/S DB I DB II total

training P 13 182 195
S 325 182 507

validation P 2 23 25
S 50 23 53

testing P 6 62 68
S 150 62 212

total P 21 267 288
S 525 267 792

C. EVALUATION MEASURES
For evaluating the results we report DSC value (see Sec-
tion III-B), MSD and Hausdorff distance (HD) which are

defined as:

MSD =
1

2

(
1

n

n∑
i=1

d(ai, S) +
1

m

m∑
i=1

d(bi, S)

)
, (3)

HD = max{maxi{d(ai, S)},maxj{d(bi, G)}}, (4)

in which S and G are the predicted and ground truth
contours, and {a1, ..., an} and {b1, ..., bm} the surface mesh
points of S and G, and d(ai, S) = minj‖bj − ai‖ re-
spectively. For the Hausdorff distance, we report the 95%
percentile instead of the maximum for robustness against
outliers. Since defining the slices where the tumor starts and
stops is difficult even for medical doctors, we report perpen-
dicular cranial and caudal distance between the output of the
CNNs and the ground truth. The cranial distance (CrD) error
is computed as the topmost slice number of the ground truth
minus the topmost slice number of the CNN prediction; the
caudal distance (CaD) error is computed similarly.

V. EXPERIMENTAL RESULTS
In this section the experimental results are reported, with the
datasets divided into training, validation and test sets as de-
scribed in Section IV-B. Model optimization experiments are
described in Section V-A, where comparison is performed
on the validation set. Subsequently, the final results are
reported on the test set in Section V-B. For all experiments,
we extract the largest component of the network prediction
using connected component analysis, and report that. A
repeated measure oneway ANOVA test was performed on
the Dice values using a significance level of p = 0.05.

A. MODEL OPTIMIZATION
We explored the effect of combinations of R values on
the results, where R is the number of sub-dilated dense
blocks in the network. Figure 3 shows the boxplots of DSC,
MSD, 95%HD, cumulative frequency (%) of DSC, and
perpendicular cranial and caudal distance errors for different
combinations of R. Since the setup R = [3, 3, 5, 3, 3]
performed best, this configuration was selected for the
remainder of the paper.

Figure 4 shows the results for different configurations of
the CNN models using the DSC loss function. Since channel
attention gates inside the DDSCAB block, i.e. ChA1 in Fig.
2, did not improve the results, these are not used in the final
configuration. The results show that DDAUnet outperforms
the other network configurations significantly.

Figure 5 shows the loss curves for different network ar-
chitectures on the validation set during the training process,
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TABLE 3: AUC for the networks on the validation set

model AUC
DUnet 0.49
DDUnet 0.53
DDAUnet-noChA2 0.73
DDAUnet-plusChA1-noChA2 0.63
DDAUnet-noSpA-plusChA1-noChA2 0.71
DDAUnet 0.76

smoothed with a kernel of size 3. It can be seen that the
networks equipped with attention gates converged quicker.
Figure 6 shows the precision-recall curves for the networks
on the validation set using the DSC loss function. The
precision and recall were calculated with different threshold
values applied to the probabilistic output of the networks.
For acquiring the final segmentation we used a threshold of
0.5. Table 3 tabulates the values of the area under the curve
(AUC) for the networks on the validation set [38]. The AUC
for DDAUnet is the largest, and we choose this method as
the final network architecture.

We experimented with different combinations of loss
functions including Dice, boundary loss, distance map loss,
Focal Dice on the validation set. Figure 7 shows the results.
The results show that DDAUnet using the DSC + BL loss
function outperforms the other loss functions significantly.

B. FINAL RESULTS

As explained before, repeatability and reproducibility stud-
ies were conducted for three distinct and random splits of
training and validation sets. Table 4 shows the results on
the independent test set after applying the largest compo-
nent analysis. Figure 8 shows example results of the final
network for some patients with different shape varieties and
difficulties raised by the presence of air pockets or feeding
tubes. The 2D DSC values are shown in yellow. Figure 9
shows a qualitative comparison between the different CNNs.

In order to study the strengths and weaknesses of the final
model, we manually labeled each scan with the following
properties: presence of air pockets in the esophagus, the
presence of a feeding tube in the esophageal lumen, the
tumor is a junction tumor, the tumor volume is larger
than 30cc (which is defined by the median split of the
GTV volumes), the patient has a hiatal hernia, the tumor
is in a dislocated esophagus, the tumor is located in the
proximal esophagus (proximal tumor). Figure 10 shows the
results of DSC value, MSD and 95%HD for the mentioned
tags for the final network on the test set. Results show
that the network works better for patients with absence of
air pockets, feeding tubes, or junction tumors. This may be
caused by the different varieties raised by the existence of
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TABLE 4: Results for DDAUnet on the independent test set, with the combined Dice and boundary loss function.

Split DSC CrD (mm) CaD (mm) MSD (mm) 95%HD (mm)
µ± σ µ± σ µ± σ µ± σ µ± σ

1 0.79 ± 0.20 -6.4 ± 26.0 3.1 ± 12.8 6.2 ± 23.2 16.1 ± 28.1
2 0.79 ± 0.19 -8.6 ± 17.7 4.6 ± 13.1 4.6 ± 16.2 14.6 ± 22.2
3 0.78 ± 0.21 -4.6 ± 12.7 2.9 ± 10.8 5.5 ± 20.6 13.5 ± 24.3

Mean 0.79 ± 0.20 -6.5 ± 19.6 3.5 ± 12.3 5.4 ± 20.2 14.7 ± 25.0
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FIGURE 5: Loss curves for the validation set during the
training process.

air pockets or foreign bodies. Also, the number of patients
with a hiatal hernia, a dislocated esophagus or a proximal
tumor is relatively small in the test set, not allowing to draw
a conclusion.

VI. DISCUSSION
Esophageal GTV segmentation is not a trivial problem, due
to the difficulties raised by the poor contrast with respect
to its vicinity. Most research addressed only segmentation
of the esophagus, while esophageal GTV segmentation has
been touched in few works. Since defining a correct start
and end location (slice) of the tumor in the cranial-caudal
direction based on CT images alone, is not an easy task even
for doctors, esophageal GTV segmentation is considered
as an ill-posed problem. In this paper, for addressing the
esophageal GTV segmentation we designed an efficient deep
learning model.

In terms of the training data, we collected 792 CT scans

8 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3096270, IEEE Access

Yousefi et al.: Esophageal Tumor Segmentation in CT Images using DDAUnet

0.0 0.2 0.4 0.6 0.8 1.0
1-Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

DUnet
DDUnet
DDAUnet-noChA2
DDAUnet-noSpA-plusChA1-noChA2
DDAUnet-plusChA1-noChA2
DDAUnet

FIGURE 6: Precision-recall curves for the different network
architectures on the validation set using the DSC loss
function.

from 288 patients diagnosed with an esophageal tumor.
This dataset is the largest dataset among the present works
addressing esophageal tumor segmentation. Training time
for a single network was in the order of 5 days. The
average inference time for the final network for a cube of
255× 255× 255 voxels, is 4.0± 1.1 seconds.

For tuning the proposed network, many experiments were
performed in the present paper. We leveraged the DenseUnet
network, already deployed in our prior work as a baseline.
In order to increase the receptive field of the network,
dense blocks were equipped by dilated convolutional layers,
dubbed the DDUnet network. We leveraged attention mech-
anisms to encourage the network to selectively filter out
GTV irrelevant features. Three types of attention gates were
utilized: i) a spatial attention gate in the dense blocks to filter
out GTV irrelevant features in the spatial domain of each
feature map, ii) a channel attention gate in the dense blocks
(ChA1) to filter out irrelevant feature maps entirely, and
iii) skip attention gates (ChA2) to filter out GTV irrelevant
feature maps between the contracting and expanding paths
of the Unet. The experiments on the validation set showed
that the architecture with the spatial attention and skip
attention gates (ChA2), dubbed DDAUnet, achieved the best
result. The use of attention gates in the dense blocks (ChA1)
did not improve the results, compared to the baseline model.
This may be caused by the removal of feature maps in
early levels of the network, subsequently preventing the
network to extract fine features at deeper levels. On the
other hand, the ChA2 gates filter out redundant or irrelevant
feature maps during the retrieval of lost resolution. This
leads the network to prevent to concatenate tumor-irrelevant
feature maps and consequently aids the network to utilize
its capacity on the tumor region. The optimized network
architecture was further tuned using a large variety of
loss functions, again on the validation set. Results showed
that the summation of Dice and boundary loss performed

best. Combining the two loss functions allows the network
to concentrate not only on the region but also on the
outer contours, thereby improving the results. This confirms
results from [32] where this improvement was also observed.
Therefore, we introduced the DDAUnet with the summation
of Dice and boundary loss as the loss function in the final
network.

We trained the final network for three random splits of
the training and validation sets. The results on the test
set showed an average DSC of 0.79 ± 0.20, an MSD of
5.4 ± 20.2mm, a 95%HD of 14.7 ± 25.0mm, and cranial
and caudal perpendicular distance errors of −6.5±12.3mm
and 5.4 ± 20.2mm, respectively. The cranial and caudal
perpendicular distance errors between the ground truth and
the network result show that the network overestimates at
the top of the GTV by ~6.5 mm, and underestimates at
the bottom of the GTV by ~3.5 mm. As slice thickness of
the data was 3 mm, this translates to approximately 2 and
1 slices on average, respectively. For alleviating this issue,
incorporating auxiliary information could aid the network.

Although the datasets are not comparable, in [28] an
average DSC score of 0.76±0.13 was obtained on scans of
110 patients, using 5-fold cross validation. In [23] a DSC
score of 0.75 ± 0.04 for four patients as the test set has
been reported. In our prior work [11], we achieved a DSC
value of 0.73±0.20, and a 95% mean surface distance MSD
of 3.07±1.86 mm for 85 CT scans from 13 distinct patients.
In the work described in this paper, a higher DSC value was
obtained.

Nowee et al. studied the inter-observer variability in
esophageal tumour delineation, and found that this vari-
ability is mainly located at the cranial and caudal border
[4]. They report a generalized conformity index for the
GTV, a measure related to Dice overlap but for multiple
observers, of 0.67. The human delineation variation in the
cranial direction, defined as the standard deviation of the
most proximal slice, was on average 9.9 mm, and 7.5 mm
for the caudal direction. Although these measures are not the
same as the measures reported in this paper, we cautiously
conclude that the cranial and caudal error of the proposed
automatic method (see Table 4) is not far from human
delineation variation.

Nowee et al. also investigated the impact of incorporating
FDG-PET scans in the delineation process, and concluded
that although it can influence the delineated volume signif-
icantly, its impact on observer variation was limited. As a
future work, we aim to study if fusion of CT with FDG-
PET can aid the CNNs to improve the extracted features
and subsequently the segmentation results.

For a close inspection, we investigated the results on
the independent test set for the final network. We labelled
the patients in the test set with different tags, including
the presence of air pockets, feeding tube, junction tumor,
tumor volume > 30cc, hiatal hernia, dislocated esophagus,
proximal tumor. Inspection of the final results (see Figure
10) showed that the network performed better for patients
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FIGURE 7: A comparison between deploying different loss functions for DDAUnet on the validation set. The number of
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with an absence of air pockets, feeding tubes in the esoph-
agus lumen, or junction tumors. A lower performance was
obtained for smaller tumors (< 30cc), while the strength
of the network for patients with a dislocated esophagus,
a proximal tumor, or a hiatal hernia was not judge-able.
Therefore, enriching the dataset with more patients with
the mentioned properties would potentially improve the
performance of the model. Also, incorporating endoscopic
findings in the process of segmentation can be considered as
a future work to investigate if that can aid CNNs to reduce
errors specially at the start and end of the GTV.

VII. CONCLUSION

In this study, we collected a large set of CT scans from 288
distinct patients with esophageal cancer. To the best of our
knowledge this is the largest dataset in esophageal tumor
segmentation literature to date. We showed that despite the
difficulties raised by poor contrast of esophageal tumors
with respect to their neighbouring tissues, varieties in shape
and location of tumor, presence of air pockets and foreign
bodies, the proposed method, dubbed dilated dense attention
Unet (DDAUnet), could segment the gross tumor volume
with a mean surface distance of 5.4± 20.2mm.
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