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ABSTRACT In this paper we propose a supervised method to predict registration misalignment using
convolutional neural networks (CNNs). This task is casted to a classification problem with multiple classes of
misalignment: ““correct” 0-3 mm, ““poor”” 3-6 mm and “wrong” over 6 mm. Rather than a direct prediction,
we propose a hierarchical approach, where the prediction is gradually refined from coarse to fine. Our
solution is based on a convolutional Long Short-Term Memory (LSTM), using hierarchical misalignhment
predictions on three resolutions of the image pair, leveraging the intrinsic strengths of an LSTM for
this problem. The convolutional LSTM is trained on a set of artificially generated image pairs obtained
from artificial displacement vector fields (DVFs). Results on chest CT scans show that incorporating
multi-resolution information, and the hierarchical use via an LSTM for this, leads to overall better F1 scores,
with fewer misclassifications in a well-tuned registration setup. The final system yields an accuracy of 87.1%,
and an average F1 score of 66.4% aggregated in two independent chest CT scan studies.

INDEX TERMS Image registration, registration misalignment, convolutional neural networks, hierarchical

classification.

I. INTRODUCTION
Most image registration techniques do not provide insight
in the local misalignment after registration. It is common to
manually inspect the registration quality afterwards, which
is time-consuming and prone to inter-observer errors as well
as human fatigue. A fast automatic dense map indicating the
misalignment locally has quite a few applications in medi-
cal imaging. This dense misalignment map can be utilized
in radiation dosimetry [1], image-guided interventions [2],
for improving the registration quality automatically [3] or
semi-automatically [4]. Moreover, a fast automatic prediction
of registration misalignment could substantially reduce the
manual assessment time.

Several intensity-based and registration-based features
were proposed as a surrogate for registration misalign-
ment. Park er al. [5] proposed normalized local mutual
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information (NMI) and Rohde et al. [6] utilized the local
gradient of the NMI as a surrogate for misregistration.
Schlachter et al. [7] reported that the histogram intersection,
which is a distance measure between the histogram of intensi-
ties of a pair of images [8], performs well as a visual assistant
to a human expert in detecting local registration quality.
Although the mentioned metrics can represent the registration
error, it has been shown by Rohlfing [9] that image similar-
ities cannot necessarily distinguish accurate from inaccurate
registrations. Hub et al. [10] proposed performing multiple
registrations with perturbations in the B-spline grid ([11])
as a measure of registration uncertainty. Kybic [12] pro-
posed bootstrapping over pixels in the cost functions. Other
approaches like block matching [13] and polynomial chaos
expansions [14] are utilized in the context of detecting reg-
istration misalignment. However, these algorithms are very
time-consuming.

In probabilistic image registration, an uncertainty map can
be provided after the registration [15]—[17]. This uncertainty
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map commonly is counted as a surrogate for image registra-
tion error. However, Luo et al. [18] reported that the uncer-
tainty derived from probabilistic image registrations might
not necessarily correlate with the registration error.

Several machine learning approaches have been used in
assessing the registration quality. Muenzing et al. [19] cast
the problem to a classification task. They extracted several
intensity-based features around a number of distinctive land-
marks in chest CT images. Sokooti et al. [20], [21] extracted
both intensity and registration-based features around a dilated
region of landmarks and trained a regression forest to predict
the registration error. Drawbacks of these methods are that
training is based on a limited number of manual landmarks,
and/or can only be applied to non-rigid registration.

Deep learning-based methods have been presented
recently and achieved promising results for medical image
registration [22]-[24]. Predicting the registration error with
a CNN-based approach was recently proposed by Eppen-
hof and Pluim [25]. They used a single scale method
and predicted registration misalignment smaller than 4 mm.
Senneville et al. [26] proposed a deep learning method to
classify brain MR registrations as usable or non-usable. This
method cannot predict misalignment locally, for non-rigid
image registration.

Hierarchical approaches have been used in many tasks in
the field of image classification. Salakhutdinov er al. [27]
proposed a hierarchical classification model, in which
objects with fewer occurrences can borrow statistical strength
from related objects that have many training examples.
Ristin et al. [28] reported that taking into account the hier-
archical relations between categories and subcategories can
improve the performance of classification. Such an approach
has also been used in recent deep learning methods. Redmon
and Farhadi [29] in their proposed method for object detec-
tion, YOLO9000, predict labels in a hierarchical approach
using conditional probability. Chen et al. [30] predict abnor-
mality labels in chest X-ray images using a similar hier-
archical approach with conditional probability. They added
another stage with unconditional probabilities and reported
better performance in comparison with only a single stage
with conditional probability. Taherkhani et al. [31] reported
that utilizing coarse images can improve weakly super-
vised fine image classification performance. Guo et al. [32]
reported that utilizing a convolutional LSTM [33] and pre-
dicting the labels from coarse to fine, can improve the accu-
racy of the classification of both coarse and fine labels.
In their method, the CNN and LSTM extract discriminative
features and jointly optimize the fine and coarse labels clas-
sification. A similar hierarchical LSTM approach has been
utilized in music genre classification [34]. In the aforemen-
tioned methods, the hierarchical approach is only applied on
the network outputs (coarse and fine labels), while the inputs
are kept similar in all steps of the hierarchy.

In this work, inspired by the hierarchical classification
idea of [32], we propose a hierarchical convolutional LSTM
approach to densely predict the registration misalignment.

VOLUME 9, 2021

Moreover, we incorporate multi-resolution information for
the inputs as well as the outputs. This way, the LSTM takes
input images from coarse to fine resolution and progressively
predicts output labels from coarse to fine. We propose to use
a pre-trained registration network to encode the input image
pair in a latent space, and utilize an LSTM decoder to predict
the final labels from this latent space. We trained our deep
learning model on image pairs artificially generated from real
data, as a data augmentation step. In this way, in contrast
to [19] and [21], we have access to many training samples
instead of a small number of manually annotated landmarks.
Different from earlier deep learning methods, the proposed
method can be used to predict the registration error for any
registration paradigm, including rigid and non-rigid regis-
tration. Different from [25], the proposed method is capa-
ble of detecting relatively large registration misalignments.
The inference time of the proposed method is approximately
2.8 seconds on a 3D patch of size 205 x 205 x 205, which is
substantially faster than methods involving multiple registra-
tions like [10], [12], [21].

In Section II, we introduce the network architectures
(ITI-A) and explain the training data generation
process (II-B). In Section III, we describe the data sets used
in this study (III-A), the detailed setup of the experiments
(III-B), and the evaluation measures (III-C). The tuning of
hyper-parameters (III-D) and the results III-E, III-F) are
reported afterwards. Finally, the Discussion (Section IV) and
Conclusion (Section V) are presented.

Il. METHODS

A general block diagram of the proposed method is shown
in Fig. 1. The input of the network is a pair of images
consisting of a fixed image Ir and a deformed moving
image Ip, resulting from an arbitrary registration method.
The input image pair is then downsampled and encoded by
a deep learning registration network at three resolutions. The
latent representations £’ are subsequently fed to a decoder
(an LSTM), where the decoder predicts misregistration
labels d for each voxel, corresponding to the local misalign-
ment. The LSTM not only considers the encodings at the
three resolutions, but also considers these in a coarse-to-fine,
hierarchical manner.

A. NETWORK ARCHITECTURES

1) ENCODER

In the encoder, an image pair (If, Ip) is encoded to create
a latent representation of the input pair and their spatial
relation. Such an encoder may be trained from scratch, or a
pre-trained architecture can be chosen. Popular examples of
the latter is to use a VGG or a ResNet network trained on
large-scale natural images [36], [37], sometimes also used to
compute a perceptual loss in a downstream task [38]. A down-
side of such an approach is that each of the input images
is encoded separately, and subsequently the spatial relation
between the input images is not represented. In addition,
as reported by Raghu et al. [39], for medical imaging tasks
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FIGURE 1. Block diagram of the proposed system. In the encoder, a pair
of images is given as the input. Three RegNet architectures [35] process
the input images over three resolutions (|4, |2, 1) and generate a latent
representation (the encoded feature maps ') for each resolution. All
RegNet blocks are architecturally identical, but are initialized with
weights from pre-trained networks on different resolutions. In the LSTM
decoder, the latent representations £’ are decoded to labels
corresponding to the local misalignment class d.

a network trained on similar data is favored over a network
trained on natural images. Instead, we therefore propose to
encode the input pair by a pre-trained medical image regis-
tration network, thus allowing the direct encoding of a pair of
images, while also representing the spatial relation between
them.

Any registration network from the literature can be used
here, and we opt for the RegNet architecture [22], [35],
which we previously proposed for the registration of chest
CT scans. Since this network achieved promising results,
it is potentially a good candidate for the task of predicting
registration misalignment as well. The RegNet architecture
is given in Fig. 2. This design is identical to the U-Net-
advanced (Uadv) design proposed in [35]. The last three
layers from the original design are excluded here, and the
high dimensional feature maps from the now last layer are
used as a latent representation of the input pair, and thus
as input for the decoder. As illustrated in Fig. 1, we utilize
three separate encoders, each receives an input image pair
at a different resolution, using a down-sampling factor of
four ({4), two (|2) and 1 (i.e. the original resolution). This
way latent representations are built at three different scales.

The RegNet architecture is a patch-based design where
the size of the inputs and output are 101 x 101 x 101
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FIGURE 2. The RegNet architecture used for encoding the input image
pair. This architecture is identical to the U-Net-advanced (Uadv) design
proposed in [35], with the last three layers excluded. The number of

feature maps and the spatial size are shown on top and bottom of each
layer, respectively.

and 25 x 25 x 25, respectively. All convolutional layers use
batch normalization [40] and ReLu activation [41], except
for the trilinear upsampling layer, in which a constant trilinear
kernel is used. The total number of parameters in this design
is 737,430.

The weights of the three encoders are initialized with the
pre-trained RegNet' networks (see Fig. 1), that were previ-
ously trained for image registration [35]. Below, we report
experiments both with freezing these weights and with keep-
ing them trainable. When keeping them trainable, all layers
are kept trainable, as recommended by Tajbakhsh ez al. [42].

2) DECODER

In the decoder, the latent representations at each of the
three resolutions £’ are considered to predict three out-
put labels corresponding to registration misalignment: cor-
rect [0,3) mm, poor [3,6) mm and wrong [6, o0) mm [21].
A straightforward choice for the decoder is to concatenate the
latent feature maps and feed them to a convolutional neural
network to predict the final labels. This approach is illustrated
in Fig. 3a and is named multi-scale CNN. Instead, we propose
a hierarchical approach using convolutional LSTM (Long
Short-Term Memory) layers similar to [32] as they reported
that predicting the labels from coarse to fine can improve the
overall accuracy of the classification of fine labels in natural
images. The coarse labels usually share a set of global fea-
tures and for the fine labels more distinctive local properties
are extracted.

The LSTM unit was first proposed for machine translation
where the input, output, and hidden states are all modeled as
temporal sequences using fully connected units [43]. As this
approach does not capture the spatial relations in the data,
Shi et al. [33] proposed a convolutional LSTM unit, where
the fully connected (FC) layers are replaced by convolutional
layers. This way the unit is capable of capturing and encoding
spatio-temporal information for visual series. We can imag-
ine inputs and state as vectors standing on a spatial grid.
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(b) Hierarchical LSTM decoder

FIGURE 3. The decoder. The latent representations £/ of the three resolutions |4, |2 and 1 are merged and the final output predicts three misalignment
labels: correct [0,3) mm, poor [3,6) mm and wrong [6, o) mm. In the CNN decoder (a), merging is done using concatenation. In the LSTM decoder (b),
the latent representations £’ are given in sequence and the misalignment labels are gradually refined in a hierarchical manner. The labels inside the

shaded boxes in the top-right of the figure represent the auxiliary labels.

The future state of a cell in the grid is calculated by the inputs
and past states of its neighbors.

In the proposed LSTM decoder (Fig. 3b), rather than
supplying the three latent representations £! all at once,
they are provided in sequence. Starting with £*, a coarse
prediction of the registration error is first made, predicting
only two labels: ‘good‘ registration with an error in the
range [0, 1) mm, and ‘bad‘ registration with an error higher
than that i.e. [0], o) mm. In the experiments for example
we have used 87 = 6 mm. In the next time step of the
convolutional LSTM, the £ features are additionally consid-
ered, combining them with the hidden state of the previous
time step. Now the output predictions are refined into three
classes [0, 82) mm, [65, 61) mm and [0, co) mm. We keep
all the output probabilities unconditional similar to [32].
In the last time step, the latent representation £' is used
and combined with the hidden state, further refining the
output prediction with splitting the previous smallest class
to [0, 83) mm and [63, 62) mm. This way the predictions are
built up in a hierarchical manner, step-by-step incorporating
the multi-resolution embeddings of the input pair and step-
by-step refining the registration error prediction.

In the final convolutional layers of both decoder designs,
the softmax activation is used. For other convolutional layers
in the CNN-based decoder, batch normalization and ReLu
activation are utilized. In the LSTM design, cell outputs,
hidden states, and gates (input, forget, output) have similar
settings as in [33]. An additional output is allocated for each
coarse label. For instance, in Fig. 3b, six outputs are available,
four of them for fine labels and two for coarse labels. We per-
form experiments for various values of 6;, where i € {1, 2, 3}
and 01 > 6, > 63.
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B. TRAINING DATA GENERATION
In order to train the networks, we propose to artificially
generate image pairs from the available real data. The main
advantage of artificial generation is that numerous number
of training samples can be obtained in an inexpensive way.
Moreover, a dense ground truth is made, which is not achiev-
able with other forms of ground truth such as manual land-
marks or segmentation maps.

We use a similar approach as in [35] to artificially generate
the DVFs and deformed image. Four types of artificial defor-
mation are applied:

single frequency: This type of DVF is generated by perturb-
ing B-spline grids. Since the grid knots are uniformly
spaced, the generated DVF has only one random spatial
frequency.

mixed frequency: A combination of the single frequency
DVF filtered by a Gaussian kernel with a smaller sigma.

respiratory motion: Simulating the respiratory motion by
expansion of the chest in the transversal plane, transition
of the diaphragm in craniocaudal direction [10]. Finally,
arandom ‘‘single frequency” deformation is added.

identity transform: This type represents no misalignment
between the images.

After creating the deformed images with the generated
DVFs, to make the deformed images more realistic, several
intensity augmentations are performed:

Gaussian noise: Gaussian noise with a standard deviation of
oy =5 is added to the deformed image.

Sponge model: Multiplying the intensity of the deformed
moving image by the inverse of the determinant of the
Jacobian of the transformation. This is an approximation
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based on the theory of mass preservation in the lung
during breathing [44].

By applying the proposed artificial DVF generations, many
image pairs can be generated for each image, by varying the
hyper-parameters corresponding to each category.

Ill. EXPERIMENTS AND RESULTS

A. DATA

Experiments are performed using three chest CT studies: The
DIR-Lab-COPDgene [45], the DIR-Lab-4DCT [46] and the
SPREAD [47] studies.

In the DIR-Lab-COPDgene study, ten cases are available
in inhale and exhale phases. The average image size
and the average voxel size are 512 x 512 x 120 and
0.64 x 0.64 x 2.50 mm, respectively. 300 corresponding
landmarks are manually annotated in each case.

In the DIR-Lab-4DCT study, ten cases with varying res-
piratory phases are available. We selected the maximum
inhalation and maximum exhalation phases, as more manual
landmarks are available in these phases (300 landmarks). The
size of the images is approximately 256 x 256 x 103 with an
average voxel size of 1.10 x 1.10 x 2.50 mm.

In the SPREAD study, 21 cases are available. Each case
consists of a baseline and a follow-up image, in which
the follow-up is taken after about 30 months. Both base-
line and follow-up are acquired in the maximum inhale
phase. The size of the images is about 446 x 315 x 129
with a mean voxel size of 0.78 x 0.78 x 2.50 mm. About
100 well-distributed corresponding landmarks were previ-
ously selected [44] semi-automatically on distinctive loca-
tions [48]. Two cases (12 and 19) are excluded because of
the high uncertainty in the landmark annotations [44].

B. EXPERIMENTAL SETUP

1) TRAINING DATA

In the SPREAD study, 10, 1, and 8 cases are used for the
training, validation, and test sets, respectively. The DIR-Lab-
COPD study is used for training and validation only, where
9 cases are used for training and the remaining case for
validation. The entire DIR-Lab-4DCT database (10 cases) is
used as an independent test set. The validation set is mainly
used for tuning the hyper-parameters and selecting the best
approach. Since we initialized the weights of RegNet from
the study of [35], we kept the training, validation, and test
sets identical to that study, to avoid data leakage.

To generate training pairs, we use the artificial genera-
tions introduced in Section II-B. The maximum magnitude
of the DVF in each axis is set to 10 mm, so the maximum
vector magnitude is about 17 mm. For each single image,
28 artificial DVFs and deformed images are generated by
assigning random values to the variables of the single fre-
quency, the mixed frequency and the respiratory motion
deformations. Thus, in the training phase, a total number
of 1064 artificially generated image pairs are used.

62012

All images are resampled to an isotropic voxel size of
1.0 x 1.0 x 1.0 mm.

In the training phase, the patches are balanced based on the
magnitude of the artificial DVFs. The probabilities of select-
ing patches in the range [0, 3), [3, 6) and 6, co) mm are 60%,
20% and 20%, respectively. This balancing is performed to
make the training set more similar to the real world scenarios
as the distribution of landmarks in the first range is usually
higher.

2) REAL IMAGE PAIRS
In this experiment, we estimate the registration error after
registration in cases from the test set and compare it with
the ground truth landmarks. Both fixed and moving images
are taken from the same patient at different time points.
In order to create a generic evaluation study, we collect
samples by performing affine and four various conventional
non-rigid registrations using 20, 100, 500, and 2000 itera-
tions corresponding to overall poor registration quality to
overall high quality registration. The common registration
settings are: metric: mutual information, optimizer: adap-
tive stochastic gradient descent, transform: B-spline ( [11]),
number of resolutions: 3. After performing registration
on the original fixed and moving images, the fixed and
the deformed moving image after the registration are
given as inputs to the proposed misalignment estimation
method.

We define the target registration error (TRE) as
the Euclidean distance after registration between the
corresponding ith landmarks:

TRE' = |x'r — x'pl|2, (1)

where xr and xp are the corresponding landmark locations on
the fixed and deformed moving images, respectively. A mis-
alignment label is then assigned to each landmark, based
on the magnitude of the TRE. The misalignment labels are
defined based on the TRE value.

3) NETWORK OPTIMIZATION

Optimizing the neural networks is done by the Adam opti-
mizer [49] with a constant learning rate of 0.001. A stochas-
tic mini-batch method is used with a batch size of 10. The
cross-entropy loss is used for all experiments. In the LSTM
design, the cross-entropy loss is applied to unconditional
probabilities for all steps similar to [32]. The loss function
is defined as follows:

N S

loss = _]l\/ 121: (Z Z Hx} = c}logpc>, 2)

i= s=1 ceC’

where N is the total number of voxels in a mini-batch,
S denotes the number of steps, C* represents the classes
at step s, and p. is the probability of class ¢ in the out-
put. The training is performed for 30 epochs by an NVidia
RTX6000 with 24GB memory.
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TABLE 1. Landmark-based results on the training and validation set for tuning hyper-parameters. We report the mean values over all five registration
settings: affine and B-spline registration after affine with 20, 100, 500, and 2000 iterations. The sub-indices c, p, and w correspond to the correct [0,3),
poor [3,6), and wrong [6, co) mm classes. The best method is shown in bold and the second best method is shown in green. Total number of landmarks
for all five registrations in SPREAD (cases 1 to 11) and DIR-Lab COPDgene studies are 5455 and 15000, respectively.

SPREAD (case 1 to 11)

DIR-Lab COPDgene (case 1 to 10)

encoder decoder Fl. Flp Flw F1 Acc K cw misclass  Fl. Fl1, Flw F1 Acc K cw misclass
frozen multi-scale CNN 858 52,5 835 739 781 0.58 39 77.6 525 858 720 77.0 0.60 387
trainable  multi-scale CNN  90.0 625 823 783 83.1 0.66 32 722 614 851 729 758 0.60 209
frozen LSTM 6-3-1 924 549 833 769 855 0.68 52 769 385 869 674 762 059 391
trainable ~ LSTM 6-3-1 93.0 63.6 823 796 863 071 25 746 594 856 732 76.1 0.61 148
trainable ~ LSTM 12-6-3 83.0 542 845 739 756 056 15 56.7 563 846 658 719 053 368
trainable ~ LSTM 6-3-3 88.7 589 836 77.1 815 064 28 60.6 564 842 671 719 053 253
4) SOFTWARE between the wrong and the correct label (two categories

The convolutional neural networks are implemented in
Tensorflow [50], and image handling and artificial train-
ing data generation is implemented with SimpleITK [51].
elastix [52] is used to perform the conventional image
registrations.

5) ADDITIONAL METHODS

For further comparisons, two additional CNN methods are
added: single-scale CNN and RegNet-t. In the single-scale
CNN, only the encoded feature maps of the original res-
olution £! is used. The weights of the encoder are kept
trainable similar to the multi-scale CNN. In the RegNet-t
experiment, first a three-resolution registration is performed
by RegNet over the input pair [35]. The registration is per-
formed over scales four, two and one in sequence, in which
the input of each resolution is the fixed and deformed mov-
ing image of the previous resolution. Then, the magnitude
of the predicted displacement vector field (DVF) is calcu-
lated and thresholded in the following ranges: [0,3), [3,6)
and [6, co) mm. Finally, the labels “correct”, “poor” and
“wrong” are assigned to them, respectively.

In addition, the proposed multi-stage hierarchical LSTM
design is compared to a conventional learning-based method
using random forests (RF), published earlier [21]. The ran-
dom forests were trained on several hand-crafted intensity-
based and registration-based features extracted from
landmark neighborhoods. The output of the random forests
predicted the registration error in mm. Three classes were
generated by quantizing the regression results within the
ranges [0,3), [3,6), and [6, c0) mm, similar to the current
study.

C. EVALUATION MEASURES

All evaluations are computed only from the landmark loca-
tions to maximize the quality of the ground truth. The mis-
alignment labels are defined as correct, poor and wrong, when
the TRE is in range [0,3), [3,6) and [6, c0) mm, respectively,
similar to [21]. We report the following statistics: overall
accuracy, F1 score for each label separately, the average F1
of the separate F1 scores, the number of misclassifications
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apart called cw misclassification), and finally Cohen’s kappa
coefficient (k) of the confusion matrix. The accuracy may be
biased to the labels with a higher number of samples, whereas
the F1 and « coefficient are more robust for imbalanced
distributions.

D. RESULTS ON THE VALIDATION SET

This experiment is mainly designed for tuning the hyper-
parameters, i.e. the splitting values for the LSTM and
to choose between the trainable and the frozen weights
approach. We experiment with the two decoder architec-
tures introduced in Section II-A2: the multi-scale CNN
decoder and the hierarchical LSTM decoder. The encoding
architecture is kept identical in all experiments and all
weights are initialized from the pre-trained RegNet [35]. The
results are reported for both frozen and trainable encoder
weights. In the trainable experiment, the weights of all lay-
ers are kept trainable. Additionally, three different splitting
values for the LSTM designs are tested as well.

Table 1 gives the results on the training and validation sets
for the decoders with similar encoder design with frozen and
trainable approaches. Please note that the training was per-
formed on the artificial image pairs. However, these results
are reported over real images pairs on the landmark loca-
tions. Total number of landmarks for all five registrations in
SPREAD (cases 1 to 11) and DIR-Lab COPDgene studies are
5455 and 15000, respectively.

First, we compare the encoding parts between frozen and
trainable approaches. In this evaluation, the splitting values
of the LSTM design are set to 6, 3, 1 for 61, 6> and 63,
respectively. As is shown in the top four rows of Table 1,
based on F1, k coefficient and the number of misclassifica-
tions between the wrong and the correct label (cw misclass),
a consistent improvement can be achieved by utilizing a
trainable encoder. The improvement of F1 in the SPREAD
study is from 73.9% to 78.3% and 76.9% to 79.6%, and in
the DIR-Lab COPDgene study from 72.0% to 72.9% and
67.4% to 73.2% for the multi-scale CNN and the hierarchical
LSTM architecture, respectively. Accuracy (Acc) is more
biased towards category ¢, as the number of samples for this
label is much higher than for the other labels. In the SPREAD

62013



IEEE Access

H. Sokooti et al.: Hierarchical Prediction of Registration Misalignment Using Convolutional LSTM

dataset, F1. and the accuracy of the trainable encoders are
better. However, in the DIR-Lab COPDgene set, F1. and the
accuracy of the frozen encoders are slightly better. On the
other hand, the number of outliers significantly decreases
in the DIR-Lab COPDgene study. All in all, we select the
trainable approach for the encoder in the remainder of the
paper.

Comparing the two decoders (with trainable encoder),
the LSTM design obtained better performance in terms of F1,
k coefficient, the number of outliers, and accuracy, compared
to the CNN, on both datasets. We keep both designs for
further experiments on the independent test data.

We additionally experiment with the hierarchical splitting
approach of the LSTM design, using various splitting val-
ues 6;: 6-3-1, 12-6-3 and 6-3-3. We keep the misalignment
labels of the last step equal to [0, 3), [3, 6) and [6, c0) mm
by merging the auxiliary labels. Therefore, in the LSTM
design with the 6-3-1 splitting approach, labels [0, 1), [1, 3)
are merged into a single label [0, 3), and in the LSTM
design with the 12-6-3 splitting approach, labels [6, 12),
[12, co) are merged into a single label [6, co). The results
are given in the bottom two rows in Table 1. Based on the
Fl, « coefficient and the number of cw misclassifications,
the hierarchical splitting with values 6-3-1 achieved better
performance. The F1,, score of LSTM 12-6-3 in the SPREAD
study are relatively high. On the other hand, the F1; of LSTM
6-3-1 is higher than the other LSTM designs. This indicates
that utilizing an auxiliary label in a specific range can improve
the performance in that range. All in all, we select the LSTM
with 6-3-1 splitting values for the remainder of the paper.

E. RESULTS ON THE INDEPENDENT TEST SET

In this section, we investigate the performance of the pro-
posed decoders in unseen test sets, i.e. the SPREAD study
cases 13 to 21 and the DIR-Lab 4DCT cases 1 to 10. The
total number of landmarks for each registration in SPREAD
(case 13 to 21) and DIR-Lab 4DCT studies are 783 and
3000, respectively. For further comparisons, two additional
methods are added in this experiment: single-scale CNN and
RegNet-t (see Section III-B5). The landmark-based results
are reported in Table 2 within five various registration settings
(similar to the validation experiment): affine transformation,
B-spline transformation with 20, 100, 500, and 2000 itera-
tions. The B-spline registrations are performed after the initial
affine transformation. The aggregation of all five registrations
are presented in the “total”” row.

As seen in Table 2, among the classification networks,
in the ‘“‘total” row, the multi-scale CNN and LSTM 6-3-1
achieved better results in terms of F1 score and the num-
ber of cw misclassifications. This demonstrates that utilizing
information from different scales can improve the perfor-
mance. The LSTM design performed better in the SPREAD
study based on all of the measures in this table Fl., F1,,
Fl,, FI, accuracy (Acc), k coefficient and the number of
cw misclassifications. In the same evaluation in the DIR-Lab
4DCT study, there is no consistent superiority among the
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multi-scale classification networks. In terms of F1, the multi-
scale CNN gained slightly better results i.e. 75.9% in com-
parison with single-scale CNN (73.9%) and LSTM (73.1%).
All in all, based on the number of cw misclassifications,
the multi-scale CNN and the LSTM design performs better
than the single-scale CNN.

Strikingly, direct quantization of the RegNet encoder
(method RegNet-t) performs quite well for affine registration
and for coarse B-spline registration with a small number
of iterations (20 and 100), leading to improved kappa val-
ues compared to the other three classification networks. For
instance, for affine registration, RegNet-t achieved the high-
est F1 score of 78.2% and 83.4% for SPREAD and DIR-Lab
4DCT, respectively. However, for more realistic B-spline reg-
istration with a larger number of iterations, the LSTM and
the multi-scale CNN methods perform better. For example
for B-spline registration with 2000 iterations, a F1 score
of 68.9% and 63.9% were obtained for the LSTM on the
SPREAD and DIR-Lab 4DCT datasets, respectively. Notably,
the LSTM decoder performs much better in terms of the num-
ber of cw misclassifications compared to RegNet-t, especially
for the DIR-Lab 4DCT dataset where this number decreases
from 197 to 77 in the “total” row. The inference time on a
3D patch of size 205 x 205 x 205 was approximately 2.4,
0.7, 1.3, and 2.8 seconds for RegNet-t, single-scale CNN,
multi-scale CNN, and LSTM, respectively.

Detailed results for the LSTM 6-3-1 decoder are reported
in Tables 3 and 4. Table 3 shows the confusion matrix for
the three classes correct, poor, and wrong, for the results
aggregated over all registration settings (the “‘total” row
in Table 2). The vast majority of misclassifications is one
category off, with only 0.23% (9/3915) and 0.51% (77/15000)
of the misclassifications two categories off, for the SPREAD
(case 13 to 21) and DIR-Lab 4DCT studies, respectively.
The intermediate hierarchical prediction results for each of
the LSTM time steps are given in Table 4. Such results are
not available for the CNN-based decoder, as that architecture
lacks the possibility for gradual refinement. In step 1, only
low resolution latent representations are available (£*), with
a prediction in two classes only: [0, 6) mm and above 6 mm.
This results in F1 scores of 92.4% and 60.1% for these
two classes, for the SPREAD data. The results are gradually
refined, by adding higher resolution representations and by
predicting more fine-grained registration error classes, see
Table 4. It can be seen that as the LSTM refines its results,
the F1, and F1y, scores are gradually improved in both stud-
ies. From step2 to step3-merged all F1 measures improve,
in particular for the DIR-Lab 4DCT study.

Visual examples of the predictions for LSTM 6-3-1,
single CNN, multi CNN, and RegNet-t are illustrated in
Fig. 4. The ground truth misalignment on the landmark loca-
tions are dilated for better visualization. The color bar in the
top center image indicates the target registration error. For
all predictions, a three-label output is illustrated i.e. correct
[0,3) (green), poor [3,6) (yellow) and wrong [6, 00) mm (red).
An example of registration with affine and B-spline with
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TABLE 2. Landmark-based results on the test set. We report metrics over all five registration settings: affine and B-spline registration after affine with 20,
100, 500, and 2000 iterations. The sub-indices c, p and w correspond to the correct [0,3), poor [3,6) and wrong [6, co) mm classes. The best method is
shown in bold and the second best method is shown in green. Total number of landmarks for each registration in SPREAD (cases 13 to 21) and DIR-Lab
4DCT studies are 783 and 3000, respectively.

SPREAD (case 13 to 21)

DIR-Lab 4DCT (case 1 to 10)

registration decoder Fl. Flp Fly F1 Acc K cw misclass  Fl¢ Fl, Fly F1 Acc K cw misclass
Affine RegNet-t 705 721 921 782 839 070 0 884 702 91.6 834 857 077 12
single CNN 413 515 878 602 751 049 7 86.1 598 90.7 789 831 072 9
multi CNN 478 712 921 703 81.6 066 0 88.5 66.6 856 802 81.0 071 2
LSTM 6-3-1 655 67.1 910 745 815 066 0 88.6 584 793 754 761 0.64 9
B-spline 20 RegNet-t 89.6 677 828 80.0 830 0.69 2 92.0 673 887 827 855 0.77 15
single CNN 77.1  47.1 655 632 663 047 37 89.7 567 874 779 824 073 29
multi CNN 837 o644 821 767 774 0.62 2 90.2 640 822 788 805 071 6
LSTM 6-3-1 884 656 82.1 787 812 067 2 912 573 778 754 785 0.67 6
B-spline 100 RegNet-t 95.0 514 753 739 900 0.60 8 927 617 848 798 850 0.74 25
single CNN 84.6 306 53.0 560 732 036 42 88.6 474 839 733 80.1 067 55
multi CNN 91.8 488 764 723 851 055 8 91.0 573 737 740 789 0.66 9
LSTM6-3-1 956 561 756 758 904 065 3 923 540 711 725 792 0.65 17
B-spline 500 RegNet-t 96.7 485 682 71.1 9277 058 4 933 555 657 715 828 0.64 56
single CNN 865 251 430 515 760 030 51 88.7 364 754 668 776 059 81
multi CNN 93.7 438 738 705 883 052 10 914 533 628 692 790 061 17
LSTM 6-3-1 957 444 83.0 744 914 057 2 93.3 0 60.8 683 8.1 0.61 23
B-spline 2000  RegNet-t 96.7 273 562 60.1 93.0 041 7 932 463 436 61.0 817 054 89
single CNN 869 164 41.1 481 766 025 50 89.3 356 71.7 655 79.0 057 127
multi CNN 93.6 241 727 635 877 039 8 928 501 576 668 812 0.59 41
LSTM6-3-1 962 30.6 80.0 689 922 050 2 93.6 429 553 639 819 056 22
total RegNet-t 942 634 879 818 885 0.76 21 924 616 832 791 841 073 197
single CNN 833 391 746 657 734 054 187 88.7 487 844 739 804 068 301
multi CNN 903 592 877 79.1 84.0 0.70 28 91.2 592 773 759 80.1 0.68 75
LSTM 6-3-1 936 604 878 806 874 075 9 923 538 732 731 794 0.66 77

TABLE 3. Confusion matrix of the landmark-based results on the test set,
for the trainable LSTM 6-3-1 decoder. We report the aggregated values
over all five registration settings: affine and B-spline registration after
affine with 20, 100, 500, and 2000 iterations. The sub-indices c, p and w
correspond to correct [0,3), poor [3,6) and wrong [6, co) mm classes.

P and A refer to the predicted and actual labels for each class. Total
number of landmarks for all five registrations in SPREAD (case 13 to 21)
and DIR-Lab 4DCT studies are 3915 and 15000, respectively.

SPREAD (case 13 to 21) DIR-Lab 4DCT (case 1 to 10)
\ Ac Ap Aw \ Ac Ap Aw

P. | 2441 117 3 P | 7526 680 70
P, | 200 371 72 P, | 492 1757 1656
Py | 6 8 608 Py | 7 18 2624

2000 iterations is given in Fig. 4a. LSTM 6-3-1 achieved the
best performance among the others with only one misclassi-
fication out of 5 landmarks in this slice, where it incorrectly
predicted poor (yellow) label for the correct (green) landmark
in the right lung (left side of this image). RegNet-t under-
predicted in this slice and misclassified in the wrong (red)
regions. Another example with only affine registration is
given in Fig. 4b. In this slice LSTM 6-3-1 and RegNet-t
predicted all four landmarks correctly.

F. COMPARISON WITH RANDOM FOREST METHOD
The proposed multi-stage hierarchical LSTM design is com-
pared to a conventional learning-based method using random
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TABLE 4. Detailed hierarchical results of the landmark-based results on
the test set, for the trainable LSTM 6-3-1 decoder. We report the
aggregated values over all five registration settings: affine and B-spline
registration after affine with 20, 100, 500, and 2000 iterations. The
sub-indices c, p and w correspond to correct [0,3), poor [3,6) and wrong
[6, oo) mm classes. The shaded cells represent a combination of several
fine-grained labels, as in earlier steps more coarse classes are predicted.

time Flco.1 Fleisz  Flp Fly F1 Acc K
SPREAD (case 13 to 21)

step 1 92.4 60.1 771 899 0.5

step 2 94.3 53.0 689 721 839 0.66

step 3 232 64.6 604 878 59.0 60.6 044

step 3-merged 93.6 604 878 80.6 874 0.75
DIR-Lab 4DCT (case 1 to 10)

step 1 84.2 149 496 733 0.11

step 2 83.6 28.0 229 448 616 032

step 3 53.8 67.2 53.8 732 620 633 0.50

step 3-merged 923 53.8 732 731 794 0.66

forests (see Section III-B5 for details). We compare this
method on the SPREAD (cases 13 - 21 ) and DIR-Lab 4DCT
(cases 1 to 5) studies, i.e. we excluded cases 6 to 10 from
DIR-Lab 4DCT as these cases were not present in the test
set of [21]. Since the random forest method was designed to
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Fixed image Deformed moving image RegNet-t

single CNN multi CNN LSTM 6-3-1

(a) DIR-Lab 4DCT study, case 6 after affine and B-spline registration with 2000 iterations

Fixed image Deformed moving image RegNet-t

single CNN multi CNN LSTM 6-3-1

(b) DIR-Lab 4DCT study, case 7 after affine registration

FIGURE 4. Examples of the prediction output on entire image pairs registered using conventional registration techniques. The ground truth misalignment
on the landmark locations are overlaid in the deformed moving images. These landmarks are dilated in this figure for a better visualization. The color bar
indicates the target registration error, which is added on the top center image. For all predictions, a three-label output is illustrated i.e. correct [0,3)
(green), poor [3,6) (yellow) and wrong [6, co) mm (red). (a) Results on the case 6 from the DIR-Lab 4DCT study. The deformed moving image is obtained
after an affine and a B-spline registration with 2000 iterations. (b) Results on the case 7 from the DIR-Lab 4DCT study. The deformed moving image is
obtained after an affine transformation.

only predict non-rigid registration error, in this experiment both studies. On all F1 measures on both datasets, the LSTM
we only included B-spline registrations with 20, 100, 500, method outperforms the random forest method, except for the
and 2000 iterations, thus excluding the affine registration. F1, score on the SPREAD study, which were 93.6% vs 96.9%

The results are reported in Table 5. In terms of F1, the pro- for LSTM vs RE. A compelling advantage of the LSTM
posed LSTM design achieved significantly better results in method is that it can be applied to affine registrations as well
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TABLE 5. Landmark-based results on the overlapping part of the test set,
comparing LSTM to the random forests method (RF) [21]. The results
include B-spline registration with 20, 100, 500, and 2000 iterations. The
sub-indices ¢, p and w correspond to correct [0,3), poor [3,6) and

wrong [6, co) mm classes.

method Flc Fl, Fl, FI  Acc
SPREAD (case 13 to 21)

RF 969 400 624 664 927

LSTM 936 604 878 806 874

DIR-Lab 4DCT (case 1 to 5)
RF 88.2 423 347 551 713
LSTM 940 564 667 724 842

as non-rigid registrations. Another major advantage of the
LSTM method is that the inference time is about 22 seconds
(for an image size of 410 x 410 x 410 mm) compared to
3 hours for the random forests, where a lot of the time is spent
in the feature calculation (registration and local normalized
mutual information).

IV. DISCUSSION

We proposed a deep learning-based method to predict regis-
tration misalignment, using a hierarchical LSTM approach
with gradual refinements. We performed a wide range of
quantitative evaluations on multiple chest CT databases.

The performance of the compared decoders in Table 2
are not consistent in all registration settings. The B-spline
registration with 2000 iterations represents the most common
setting, as this represents an accurate registration. In this
case the proposed hierarchical LSTM method achieved the
best result in terms of F1, « coefficient and the number of
cw misclassifications. In the “total” row, the number cw
misclassifications of the LSTM method is much smaller than
that of the RegNet-t. In the validation set in Table 1, the LSTM
design achieved slightly better results in comparison to the
multi-scale CNN design based on the F1,  coefficient and the
number of cw misclassifications, showing that utilizing both
the multi-resolution approach and hierarchical refinements
can improve the misalignment predictions.

The proposed encoding mechanism using RegNet showed
to be effective, as it achieved promising results even with a
simple thresholding ‘decoder’ as used in RegNet-t. In pre-
dicting the misalignment of the affine registration, RegNet-t
outperformed all other decoders. Since RegNet-t resamples
images after each stage, potentially it can capture larger
registration misalignment. We experimented with a similar
setup using the LSTM approach, resampling after each step.
However, the results of this experiment were not promising
on the validation set. Another difference is that the RegNet
was trained on artificial data with a maximum deformation of
20 mm in each direction for the course resolution (RegNet4),
whereas the maximum deformation in this study is set to
10 mm in each direction (about 17 mm in vector magnitude).
It should be noted that in terms of the total number of cw
misclassifications, the LSTM and CNN designs are still more
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in favor, which are reported as 9, 2, and 12 for the LSTM,
multi-scale CNN and RegNet-t, in order (see the first four
rows in Table 2).

The distribution of the labels ‘“‘correct”, “poor” and
“wrong” are highly imbalanced in image registration. For
instance, in the test set within five registration settings,
the distribution of samples are 67.8%, 14.7%, 17.5% in the
SPREAD study and 53.5%, 17.5%, 29.0% in the DIR-Lab
4DCT for the labels correct, poor and wrong, respectively.
In order to mimic the same distribution during training,
the probability of selecting patches in the range [0,3), [3,6)
and [6, co) mm are set to 60%, 20% and 20%, respectively
(see Section III-B1). However, this can influence the first step
of the LSTM training as the sampling becomes imbalanced
again in this step.

A comparison to previous methods for predicting registra-
tion misalignment is not trivial due to differences in approach
(classification, regression) as well as the use of different test
datasets. Table 6 gives an overview of several methods from
the literature. A classification-based approach to estimate
registration misalignment was also presented in [19]. They
proposed a classical learning-based approach using several
hand-crafted features. Muenzing et al. [19] reported F1 scores
of 95.3%, 73.8% and 86.6% in the labels [0,2), [2,5) and
[5, co) mm. It is not trivial to compare our results to this
method because the evaluation is done on different data
and using different thresholds for labels. When it comes to
the dense prediction for an entire image, calculating those
hand-crafted features become quite time-consuming. In the
CNN-based approaches, Eppenhof and Pluim [25] proposed
a regression network to predict registration misalignment.
They trained on the odd-numbered images from the DIR-
Lab-4DCT and the COPDgene data sets and tested on the
even-numbered scans, and on two additional chest CT stud-
ies. They reported a root-mean-square deviation (RMSD) of
0.66 mm between the ground truth TRE and the predicted
one for landmarks with ground truth TRE below 4 mm.
The main limitation is that the method predicts registration
misalignment smaller than 4 mm only. Since our proposed
method has one label corresponding to misalignment in the
range [6, c0) mm, a quantitative comparison is not feasi-
ble. In Section III-E, we drew a comparison between the
proposed LSTM method and a random forests regression
method [21]. We kept the experiment settings as similar as
possible. However, some minor differences still exist. For
instance, the voxel size in the LSTM method is resampled
to an isotropic size of [1, 1, 1] mm, whereas in the random
forests method, resampling is not applied. Since one of the
proposed features in [21] was the variation of the transforma-
tions with respect to the initial states of the B-spline grid, it is
not possible to use this approach for affine registration.

In this study, we proposed to use RegNet [35] to encode
a pair of images using a multi-resolution approach to
high-dimensional feature maps. Although the experiment
with a simple decoder as RegNet-t reveals that encoding
with RegNet is quite powerful, potentially, any registration
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TABLE 6. A summary of some of the earlier approaches for estimating registration misalignment. For simplification, results are averaged over all reported
test data. RF refers to a random forest and NA refers to “not available™

article output method data training testing result
Hub et al. [10], 2009 CONUMUOUS, e turbing input chest CT, NA artificial DVF NA
local in-house
. classification, cascade classifiers with chest CT, landmarks in real landmarks in real —_
Muenzing et al. [19], 2012 local intensity based features in-house data data F185.2%
. regression, RF using intensity and chest CT, landmarks in real ~ landmarks inreal ~ MAE 1.42 mm,
Sokooti et al. [21], 2019 local registration based features  in-house + public ~ data data F160.75%

- regression, . . . landmarks in real landmarks in real MAE 2.0 mm,
Saygili [13], 2020 local block matching + RF chest CT, public data data Acc 81.8%
Eppenhof and Pluim [25], regression, CNN chest CT, public artificial DVF landmarks in real RMSD 0.66 mm
2018 local under 4 mm data
de Senneville et al. [26], classification, ~ CNN + linear regression i . artificial affine 1 A Binary Acc
2020 global (classifier) brain MR, public  pyyp real data 96.0%
Proposed method classification, ConvL.STM ghest CT, . artificial DVF landmarks in real 1 76.5%

local in-house + public ~ under 17 mm data

network can be used instead of RegNet. It could therefore
be interesting to perform a comparison between different
network architectures. The proposed method is designed with
three resolutions of the input given in three steps to the
LSTM block. At the third resolution, the receptive field of the
network is usually larger than an entire chest CT image (with
a spacing of 1 mm). Thus, potentially no further contextual
information can be achieved by increasing the number of
resolutions. However, varying the number of steps in the
LSTM block can be an interesting experiment. We exper-
imented with three steps, but with various splitting values
in Section III-D. The number of steps of the LSTM can be
increased even with identical inputs, similar to [32].

The proposed method is expected to be sensitive to anatom-
ical changes like tumor growth. Thus, it may detect those
regions as a suboptimal local registration. This limitation
may potentially be addressed by adding a new type of defor-
mation to the artificial training data strategy, which mimics
such anatomical changes. For example, in this study we
modelled respiratory motion specifically designed for lungs
(see Section II-B), as we performed all experiments on chest
CT scans. This may be extended with additional realistic
artificial data generation types, for other use cases. However,
the proposed training and prediction methods are generic
and independent of the image type. In future work, the pro-
posed method could be evaluated on other modalities and
anatomical sites as well. Although all non-rigid experiments
in this study are performed using B-spline registration, poten-
tially, the proposed method is independent of the registration
paradigm and can be applied to other non-rigid registration
methods.

V. CONCLUSION

We proposed a framework for classifying registration mis-
alignment using deep learning, consisting of encoding rele-
vant features in a latent space and a hierarchical and gradually
refining LSTM decoder for the prediction. Multi-resolution
contextual information is incorporated in the design. The
network is fully trained over artificially generated images,
while the evaluation is performed over realistic chest
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CT scans. The proposed decoder is compared with two other
CNN-based decoders and a method based on the output of a
deep learning based registration RegNet-t. A comprehensive
study is performed on two independent test sets (SPREAD
case 13 to 21, and DIR-Lab 4DCT) with various registration
settings. In the B-spline registration with 2000 iterations,
the proposed method achieved an FI and number of cw
misclassifications of 68.9%, 2 and 63.9%, 22 in the SPREAD
and the DIR-LAB 4DCT studies, respectively. In the aggre-
gation of all registration settings, the proposed LSTM design
obtained the least number of cw misclassifications. At the
inference time, the proposed method can predict a dense map
in about 22 seconds.

ACKNOWLEDGMENT

Dr. M.E. Bakker and J. Stolk are acknowledged for providing
a ground truth for the SPREAD study data used in this paper.
The author would like to thank Dr. R. Castillo and T. Guerrero
for providing the DIR-Lab data.

REFERENCES

[1] I. J. Chetty and M. Rosu-Bubulac, “Deformable registration for dose
accumulation,” Seminars Radiat. Oncol., vol. 29, no. 3, pp. 198-208,
Jul. 2019.

[2] N. Smit, K. Lawonn, A. Kraima, M. DeRuiter, H. Sokooti, S. Bruckner,
E. Eisemann, and A. Vilanova, “PelVis: Atlas-based surgical planning for
oncological pelvic surgery,” IEEE Trans. Vis. Comput. Graphics, vol. 23,
no. 1, pp. 741-750, Jan. 2017.

[3] S.E.A. Muenzing, B. van Ginneken, M. A. Viergever, and J. P. W. Pluim,
“DIRBoost—An algorithm for boosting deformable image registration:
Application to lung CT intra-subject registration,” Med. Image Anal.,
vol. 18, no. 3, pp. 449-459, Apr. 2014.

[4] G. Gunay, M. H. Luu, A. Moelker, T. van Walsum, and S. Klein, “Semi-
automated registration of pre- and intraoperative CT for image-guided
percutaneous liver tumor ablation interventions,” Med. Phys., vol. 44,
no. 7, pp. 3718-3725, Jul. 2017.

[5] H. Park, P. H. Bland, K. K. Brock, and C. R. Meyer, “Adaptive registra-
tion using local information measures,” Med. Image Anal., vol. 8, no. 4,
pp. 465473, Dec. 2004.

[6] G. K. Rohde, A. Aldroubi, and B. M. Dawant, “The adaptive bases
algorithm for intensity-based nonrigid image registration,” IEEE Trans.
Med. Imag., vol. 22, no. 11, pp. 1470-1479, Nov. 2003.

[71 M. Schlachter, T. Fechter, M. Jurisic, T. Schimek-Jasch, O. Oechlke,
S. Adebahr, W. Birkfellner, U. Nestle, and K. Buhler, ‘“Visualization of
deformable image registration quality using local image dissimilarity,”
IEEE Trans. Med. Imag., vol. 35, no. 10, pp. 2319-2328, Oct. 2016.

VOLUME 9, 2021



H. Sokooti et al.: Hierarchical Prediction of Registration Misalignment Using Convolutional LSTM

IEEE Access

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

S.-H. Cha and S. N. Srihari, “On measuring the distance between his-
tograms,” Pattern Recognit., vol. 35, no. 6, pp. 1355-1370, Jun. 2002.

T. Rohlfing, “Image similarity and tissue overlaps as surrogates for image
registration accuracy: Widely used but unreliable,” IEEE Trans. Med.
Imag., vol. 31, no. 2, pp. 153-163, Feb. 2012.

M. Hub, M. L. Kessler, and C. P. Karger, ““A stochastic approach to estimate
the uncertainty involved in B-spline image registration,” IEEE Trans. Med.
Imag., vol. 28, no. 11, pp. 1708-1716, May 2009.

D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and
D. J. Hawkes, “Nonrigid registration using free-form deformations: Appli-
cation to breast MR images,” IEEE Trans. Med. Imag., vol. 18, no. 8,
pp. 712-721, Aug. 1999.

J. Kybic, “Bootstrap resampling for image registration uncertainty estima-
tion without ground truth,” IEEE Trans. Image Process., vol. 19, no. 1,
pp. 64-73, Jan. 2010.

G. Saygili, ‘“Predicting medical image registration error with
block-matching using three orthogonal planes approach,” Signal,
Image Video Process., vol. 14, no. 6, pp. 1099-1106, Sep. 2020.

G. Gunay, S. Van Der Voort, M. H. Luu, A. Moelker, and S. Klein,
“Local image registration uncertainty estimation using polynomial chaos
expansions,” in Proc. Int. Workshop Biomed. Image Registration. Springer,
2018, pp. 115-125.

B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab,
“Optical flow estimation with uncertainties through dynamic MRFs,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2008,
pp. 1-8.

T. Lotfi, L. Tang, S. Andrews, and G. Hamarneh, “Improving probabilis-
tic image registration via reinforcement learning and uncertainty evalua-
tion,” in Proc. Int. Workshop Mach. Learn. Med. Imag. Springer, 2013,
pp. 187-194.

M. P. Heinrich, I. J. A. Simpson, B. W. Papiez, S. M. Brady, and
J. A. Schnabel, “Deformable image registration by combining uncertainty
estimates from supervoxel belief propagation,” Med. Image Anal., vol. 27,
pp. 57-71, Jan. 2016.

J. Luo, A. Sedghi, K. Popuri, D. Cobzas, M. Zhang, F. Preiswerk,
M. Toews, A. Golby, M. Sugiyama, W. M. Wells, and S. Frisken, “On the
applicability of registration uncertainty,” in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Intervent, in Lecture Notes in Computer Science,
vol. 11765. Springer, 2019, pp. 410-419.

S. E. A. Muenzing, B. van Ginneken, K. Murphy, and J. P. W. Pluim,
“Supervised quality assessment of medical image registration: Application
to intra-patient CT lung registration,” Med. Image Anal., vol. 16, no. 8,
pp. 1521-1531, Dec. 2012.

H. Sokooti, G. Saygili, B. Glocker, B. P. Lelieveldt, and M. Staring, “Accu-
racy estimation for medical image registration using regression forests,” in
Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent in Lecture
Notes in Computer Science, vol. 9902. Springer, 2016, pp. 107-115.

H. Sokooti, G. Saygili, B. Glocker, B. P. FE Lelieveldt, and
M. Staring, “Quantitative error prediction of medical image registration
using regression forests,” Med. Image Anal., vol. 56, pp. 110-121,
Aug. 2019.

H. Sokooti, B. De Vos, F. Berendsen, B. P. Lelieveldt, I. ISgum, and
M. Staring, “Nonrigid image registration using multi-scale 3D convolu-
tional neural networks,” in Proc. Int. Conf. Med. Image Comput. Comput.-
Assist. Intervent in Lecture Notes in Computer Science, vol. 10433.
Springer, 2017, pp. 232-239.

B. D. de Vos, F. F. Berendsen, M. A. Viergever, H. Sokooti, M. Staring,
and L. ISgum, “A deep learning framework for unsupervised affine and
deformable image registration,” Med. Image Anal., vol. 52, pp. 128—-143,
Feb. 2019.

G. Balakrishnan, A. Zhao, M. R. Sabuncu, J. Guttag, and A. V. Dalca,
“VoxelMorph: A learning framework for deformable medical image
registration,” IEEE Trans. Med. Imag., vol. 38, no. 8, pp. 1788-1800,
Aug. 2019.

K. A. J. Eppenhof and J. P. W. Pluim, “Error estimation of deformable
image registration of pulmonary CT scans using convolutional neural
networks,” J. Med. Imag., vol. 5, no. 2, p. 1, May 2018.

B. D. de Senneville, J. V. Manjén, and P. Coupé, ‘“RegQCNET: Deep
quality control for image-to-template brain MRI affine registration,” Phys.
Med. Biol., vol. 65, no. 22, Nov. 2020, Art. no. 225022.

R. Salakhutdinov, A. Torralba, and J. Tenenbaum, “‘Learning to share
visual appearance for multiclass object detection,” in Proc. CVPR,
Jun. 2011, pp. 1481-1488.

VOLUME 9, 2021

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

[38

—

(39]

(40]

[41]

(42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

M. Ristin, J. Gall, M. Guillaumin, and L. Van Gool, “From categories
to subcategories: Large-scale image classification with partial class label
refinement,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2015, pp. 231-239.

J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 7263-7271.

H. Chen, S. Miao, D. Xu, G. D. Hager, and A. P. Harrison, “Deep
hierarchical multi-label classification of chest X-ray images,” in Proc. Int.
Conf. Med. Imag. with Deep Learn., May 2019, pp. 109-120.

F. Taherkhani, H. Kazemi, A. Dabouei, J. Dawson, and N. Nasrabadi,
“A weakly supervised fine label classifier enhanced by coarse supervi-
sion,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 6459-6468.

Y. Guo, Y. Liu, E. M. Bakker, Y. Guo, and M. S. Lew, “CNN-RNN:
A large-scale hierarchical image classification framework,” Multimedia
Tools Appl., vol. 77, no. 8, pp. 10251-10271, Apr. 2018.

X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-C. Woo,
“Convolutional LSTM network: A machine learning approach for precip-
itation nowcasting,” in Proc. Adv. Neural Inf. Process. Syst., vol. 28, 2015,
pp. 802-810.

C. P. Tang, K. L. Chui, Y. K. Yu, Z. Zeng, and K. H. Wong, “Music
genre classification using a hierarchical long short term memory (LSTM)
model,” Proc. SPIE, vol. 10828, pp. 334-340, Jul. 2018.

H. Sokooti, B. de Vos, F. Berendsen, M. Ghafoorian, S. Yousefi,
B. P. F. Lelieveldt, I. Isgum, and M. Staring, “3D convolutional neural
networks image registration based on efficient supervised learning from
artificial deformations,” 2019, arXiv:1908.10235. [Online]. Available:
http://arxiv.org/abs/1908.10235

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. Int. Conf. Learn. Represent.,2015,
pp. 1-14.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770-778.

J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style
transfer and super-resolution,” in Proc. Eur. Conf. Comput. Vis. Springer,
2016, pp. 694-711.

M. Raghu, C. Zhang, J. Kleinberg, and S. Bengio, “Transfusion: Under-
standing transfer learning for medical imaging,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 32,2019, pp. 3342-3352.

S. Ioffe and C. Szegedy, ‘“Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift,” in Proc. Int. Conf.
Mach. Learn., 2015, pp. 448-456.

V. Nair and G. Hinton, “Rectified linear units improve restricted Boltz-
mann machines,” in Proc. 27th Int. Conf. Mach. Learn. (ICML), 2010,
pp- 807-814.

N. Tajbakhsh, J. Y. Shin, S. R. Gurudu, R. T. Hurst, C. B. Kendall,
M. B. Gotway, and J. Liang, “Convolutional neural networks for medical
image analysis: Full training or fine tuning?” IEEE Trans. Med. Imag.,
vol. 35, no. 5, pp. 1299-1312, May 2016.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735-1780, 1997.

M. Staring, M. E. Bakker, J. Stolk, D. P. Shamonin, J. H. C. Reiber, and
B. C. Stoel, “Towards local progression estimation of pulmonary emphy-
sema using CT,” Med. Phys., vol. 41, no. 2, Jan. 2014, Art. no. 021905.
R. Castillo, E. Castillo, D. Fuentes, M. Ahmad, A. M. Wood, M. S. Ludwig,
and T. Guerrero, “A reference dataset for deformable image registration
spatial accuracy evaluation using the COPDgene study archive,” Phys.
Med. Biol., vol. 58, no. 9, p. 2861, 2013.

R. Castillo, E. Castillo, R. Guerra, V. E. Johnson, T. McPhail, A. K. Garg,
and T. Guerrero, “A framework for evaluation of deformable image regis-
tration spatial accuracy using large landmark point sets,” Phys. Med. Biol.,
vol. 54, no. 7, p. 1849, 2009.

J. Stolk, H. Putter, E. M. Bakker, S. B. Shaker, D. G. Parr, E. Piitulainen,
E. W. Russi, E. Grebski, A. Dirksen, R. A. Stockley, J. H. C. Reiber, and
B. C. Stoel, “‘Progression parameters for emphysema: A clinical investiga-
tion,” Respiratory Med., vol. 101, no. 9, pp. 1924-1930, Sep. 2007.

K. Murphy, B. van Ginneken, S. Klein, M. Staring, B. J. de Hoop,
M. A. Viergever, and J. P. W. Pluim, “Semi-automatic construction of
reference standards for evaluation of image registration,” Med. Image
Anal., vol. 15, no. 1, pp. 71-84, Feb. 2011.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Represent., 2015, pp. 1-15.

62019



IEEE Access

H. Sokooti et al.: Hierarchical Prediction of Registration Misalignment Using Convolutional LSTM

[50] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, and M. Kudlur, “TensorFlow: A sys-
tem for large-scale machine learning,” in Proc. OSDI, vol. 16. 2016,
pp- 265-283.

[51]1 B. C. Lowekamp, D. T. Chen, L. Ibéfiez, and D. Blezek, “The design of
SimpleITK,” Frontiers Neuroinform., vol. 7, pp. 1-14, 2013.

[52] S. Klein, M. Staring, K. Murphy, M. A. Viergever, and J. Pluim, ‘““Elastix:
A toolbox for intensity-based medical image registration,” IEEE Trans.
Med. Imag., vol. 29, no. 1, pp. 196205, Jan. 2010.

HESSAM SOKOOTI received the B.Sc. degree
in electrical engineering from the University of
Tehran, in 2011, and the M.Sc. degree in biomedi-
cal engineering from the K. N. Toosi University of
Technology, in 2014.

From 2015 to 2019, he was with the Division
of Image Processing, Leiden University Medi-
/‘4 cal Center (LUMC), as a Ph.D. Student in med-
! ' ical image registration and then a Postdoctoral

- | Researcher. He is currently an Artificial Intel-
ligence Researcher with Medis Medical Imaging. His research interests
include medical image registration, medical image segmentation, and
machine learning in medical image analysis.

SAHAR YOUSEFI received the B.S. degree in
software engineering from Alzahra University,
Tehran, Iran, in 2008, the M.S. degree in artificial
intelligence from the Shahrood University of Tech-
nology, Shahrood, Iran, in 2009, and the Ph.D.
degree in artificial intelligence from the Sharif
University of Technology, Tehran, in 2018.
From 2017 to 2021, she was a Deep Learn-
ing Researcher with Leiden University Medical
% Center (LUMC), Leiden, The Netherlands. She is
currently a Machine Vision Engineer with Autofill Technologies Bv. Her
research interests include deep learning, machine learning, and image and
video processing.

62020

MOHAMED S. ELMAHDY received the B.S.
and M.S. degrees in biomedical engineering from
Cairo University, Egypt, in 2013 and 2017, respec-
tively. He is currently pursuing the Ph.D. degree
in biomedical engineering with the Leiden Uni-
versity Medical Center, Leiden, The Netherlands.
His M.S. thesis focused on subvocal speech recog-
nition using deep learning. From 2013 to 2017,
he was a Teaching and Research Assistant with
the Faculty of Engineering, Cairo University. His
research interests include developing medical image registration and seg-
mentation algorithms using deep learning, image reconstruction, and multi
task learning.

BOUDEWIN P. F. LELIEVELDT received the
Ph.D. degree in medical image analysis from
Leiden University, in 1999. He is currently head-
ing the Division of Image Processing, Leiden
University Medical Center, and holds the Medi-
cal Delta Professor Chair of biomedical imaging
with Leiden University and the Delft University of
Technology. His research interest includes dimen-
sionality reduction methods, with application in
complex biomedical datasets.

MARIUS STARING received the M.Sc. degree
in applied mathematics from the University of
Twente, in 2002, and the Ph.D. degree from the
UMC Utrecht, in 2008. He is currently an Asso-
ciate Professor in medical image analysis with the
Leiden University Medical Center, where he leads
the Biomedical Machine Learning Research Line.
Since then, he has been with the LUMC, and has
been with TU Delft (part-time), since 2015. His
research interests include image registration and
all image analysis aspects around radiotherapy, and image acquisition and
radiology. He serves as the program committee member of several inter-
national conferences. He is an Associate Editor of IEEE TRANSACTIONS ON
MEDbicAL IMAGING.

VOLUME 9, 2021



