9 research outputs found
The origin of the high electrochemical activity of pseudo-amorphous iridium oxides
The origins of the superior catalytic activity of poorly crystallized Ir-based oxide material for the OER in acid is still under debate. Here, authors synthesize porous IrMo oxides to deconvolute the effect of Ir oxidation state from short-range ordering and show the latter to be a key factor
Nouvelles stratĂ©gies dâĂ©laboration de matĂ©riaux poreux Ă base dâiridium pour la rĂ©action de dĂ©gagement de dioxygĂšne
Environmental concerns and increase in energy consumption require to develop alternatives to fossil fuels. In this regard, the dihydrogen is considered as the energy vector of the future. Water electrolysis is a promising technology to produce âgreen hydrogenâ. However, decreasing the amount of noble metal needed for catalytic reactions, and particularly the iridium content in proton exchange membrane water electrolyzers, remains a critical challenge to address to allow for large scale development of this technology. Despite its unique and great stability and activity in anodic conditions, and because Ir is rare and expensive, iridium oxide strongly impacts the cost of electrolyzers. Besides decreasing the cost of the technology by lowering Ir loadings, developing catalysts with higher catalytic activity would limit the overpotential for the oxygen evolution reaction (OER) and drastically diminish H2 production cost. The objective of this work is then to decrease the iridium loading in PEM electrolyzers while maintaining their performance. To do so, iridium oxide based catalysts with a hierarchically porous structure have been synthesized by aerosol process and colloidal synthesis. In the case of iridium-molybdenum based catalysts, we have shown that small crystallized particles are responsible for the high activity toward the OER of iridium oxides calcined at low temperature. Combining in situ and ex situ studies has allowed us to propose a mechanism for the formation of iridium oxide nanocages from a copper oxide template. In general, this work provides a better understanding of the formation mechanisms and the structure-catalytic properties relationship of iridium based materials.La prĂ©servation de lâenvironnement et les besoins Ă©nergĂ©tiques croissants nĂ©cessitent le dĂ©veloppement rapide dâalternatives aux Ă©nergies fossiles. Dans ce contexte, le dihydrogĂšne est considĂ©rĂ© comme le vecteur Ă©nergĂ©tique du futur. LâĂ©lectrolyse de lâeau est une des voies les plus prometteuses pour produire de « lâhydrogĂšne vert ». Parmi les dĂ©fis Ă relever dans les technologies dâĂ©lectrolyse, un enjeu important est la diminution de la charge en mĂ©taux nobles dans les couches catalytiques, et notamment de lâiridium dans les anodes des Ă©lectrolyseurs Ă membrane Ă©changeuse de proton (PEM). Lâoxyde dâiridium est le seul catalyseur stable et actif dans les conditions anodiques dâun Ă©lectrolyseur PEM, cependant, Ir est un Ă©lĂ©ment rare et cher et son utilisation impacte le coĂ»t du systĂšme. Outre la diminution du coĂ»t dâinvestissement, augmenter lâactivitĂ© catalytique des catalyseurs anodiques permettrait Ă©galement de limiter la surtension de la rĂ©action dâĂ©volution de lâoxygĂšne (OER) et de directement diminuer le coĂ»t de production de H2. Lâobjectif de ces travaux de thĂšse est de rĂ©duire la quantitĂ© dâiridium nĂ©cessaire dans les Ă©lectrolyseurs tout en maintenant leurs performances. Pour cela, des oxydes Ă base dâiridium, Ă structure hiĂ©rarchique hautement poreuse, ont Ă©tĂ© synthĂ©tisĂ©s par processus aĂ©rosol et par voie colloĂŻdale. Dans le cas des matĂ©riaux Ă base dâiridium-molybdĂšne, nous avons montrĂ© que la prĂ©sence de petites particules cristallisĂ©es pourrait expliquer lâactivitĂ© vis-Ă -vis de lâOER des oxydes dâiridium calcinĂ©s Ă basse tempĂ©rature. La combinaison dâĂ©tudes ex situ et in situ nous a permis de proposer un mĂ©canisme pour la formation de nanocages dâoxyde dâiridium Ă partir de cubes dâoxyde cuivreux. Dans les deux cas, ces Ă©tudes ont permis une meilleure comprĂ©hension des mĂ©canismes de formation et des relations structures-propriĂ©tĂ©s catalytiques des matĂ©riaux Ă base dâoxyde dâiridium
New strategies for the elaboration of porous materials based on iridium towards the oxygen evolution reaction
La prĂ©servation de lâenvironnement et les besoins Ă©nergĂ©tiques croissants nĂ©cessitent le dĂ©veloppement rapide dâalternatives aux Ă©nergies fossiles. Dans ce contexte, le dihydrogĂšne est considĂ©rĂ© comme le vecteur Ă©nergĂ©tique du futur. LâĂ©lectrolyse de lâeau est une des voies les plus prometteuses pour produire de « lâhydrogĂšne vert ». Parmi les dĂ©fis Ă relever dans les technologies dâĂ©lectrolyse, un enjeu important est la diminution de la charge en mĂ©taux nobles dans les couches catalytiques, et notamment de lâiridium dans les anodes des Ă©lectrolyseurs Ă membrane Ă©changeuse de proton (PEM). Lâoxyde dâiridium est le seul catalyseur stable et actif dans les conditions anodiques dâun Ă©lectrolyseur PEM, cependant, Ir est un Ă©lĂ©ment rare et cher et son utilisation impacte le coĂ»t du systĂšme. Outre la diminution du coĂ»t dâinvestissement, augmenter lâactivitĂ© catalytique des catalyseurs anodiques permettrait Ă©galement de limiter la surtension de la rĂ©action dâĂ©volution de lâoxygĂšne (OER) et de directement diminuer le coĂ»t de production de H2. Lâobjectif de ces travaux de thĂšse est de rĂ©duire la quantitĂ© dâiridium nĂ©cessaire dans les Ă©lectrolyseurs tout en maintenant leurs performances. Pour cela, des oxydes Ă base dâiridium, Ă structure hiĂ©rarchique hautement poreuse, ont Ă©tĂ© synthĂ©tisĂ©s par processus aĂ©rosol et par voie colloĂŻdale. Dans le cas des matĂ©riaux Ă base dâiridium-molybdĂšne, nous avons montrĂ© que la prĂ©sence de petites particules cristallisĂ©es pourrait expliquer lâactivitĂ© vis-Ă -vis de lâOER des oxydes dâiridium calcinĂ©s Ă basse tempĂ©rature. La combinaison dâĂ©tudes ex situ et in situ nous a permis de proposer un mĂ©canisme pour la formation de nanocages dâoxyde dâiridium Ă partir de cubes dâoxyde cuivreux. Dans les deux cas, ces Ă©tudes ont permis une meilleure comprĂ©hension des mĂ©canismes de formation et des relations structures-propriĂ©tĂ©s catalytiques des matĂ©riaux Ă base dâoxyde dâiridium.Environmental concerns and increase in energy consumption require to develop alternatives to fossil fuels. In this regard, the dihydrogen is considered as the energy vector of the future. Water electrolysis is a promising technology to produce âgreen hydrogenâ. However, decreasing the amount of noble metal needed for catalytic reactions, and particularly the iridium content in proton exchange membrane water electrolyzers, remains a critical challenge to address to allow for large scale development of this technology. Despite its unique and great stability and activity in anodic conditions, and because Ir is rare and expensive, iridium oxide strongly impacts the cost of electrolyzers. Besides decreasing the cost of the technology by lowering Ir loadings, developing catalysts with higher catalytic activity would limit the overpotential for the oxygen evolution reaction (OER) and drastically diminish H2 production cost. The objective of this work is then to decrease the iridium loading in PEM electrolyzers while maintaining their performance. To do so, iridium oxide based catalysts with a hierarchically porous structure have been synthesized by aerosol process and colloidal synthesis. In the case of iridium-molybdenum based catalysts, we have shown that small crystallized particles are responsible for the high activity toward the OER of iridium oxides calcined at low temperature. Combining in situ and ex situ studies has allowed us to propose a mechanism for the formation of iridium oxide nanocages from a copper oxide template. In general, this work provides a better understanding of the formation mechanisms and the structure-catalytic properties relationship of iridium based materials
Oxygen evolution reaction on iridium-molybdenum mixed oxide electrocatalysts
International audienc
Electrochemical study of iridum oxide materials for the oxygen evolution reaction in proton exchange membrane water electrolyzers (PEMWE)
International audienceProton Exchange Membrane Water Electrolyzers (PEMWE) is a promising hydrogen production technology due to its high efficiency and compact design that will make hydrogen energy more available [1]. However, the electrolyzer performance is impeded by the catalyst at the anode for the Oxygen Evolution Reaction (OER), and this problematic motivates the search for new catalytic materials. The latter should possess high catalytic activity and long-term stability as state of art materials, RuO2 and IrO2 [2]. Also, diminishing the iridium loading in PEMWE is crucial, however, for its ability to combine electrical conductivity, activity, and stability, Ir-based materials are still attractive as anode material [3]. The present work concerns the electrochemical study of iridium oxide materials prepared by Coordinating Etching Precipitating (CEP) and by spray-drying process, the latter been recently investigated for catalysts for PEMWE [3]. The mixed-metal oxide materials obtained by both methods were subjected to different thermal treatments in the range 400â800 ÂșC. The electrochemical characterization was determine using the three-electrode electrochemical setup. Samples heated between 400â500 ÂșC presented the best performance as compared to commercial IrO2, showing at 10 mA/cm2 an overpotential range of 140-160 mV. These results demonstrate the possible use of the synthesis techniques to fabricate porous noble-metal oxides or catalysts for PEMWEs
Electrochemical study of iridium oxide materials for the oxygen evolution reaction in proton exchange membrane water electrolyzers
International audienceProton Exchange Membrane Water Electrolyzers (PEMWE) is a promising hydrogen production technology due to its high efficiency and compact design that will make hydrogen energy more available [1]. However, the electrolyzer performance is impeded by the catalyst at the anode for the Oxygen Evolution Reaction (OER), and this problematic motivates the search for new catalytic materials. The latter should possess high catalytic activity and long-term stability as state of art materials, RuO2 and IrO2 [2]. Also, diminishing the iridium loading in PEMWE is crucial, however, for its ability to combine electrical conductivity, activity, and stability, Ir-based materials are still attractive as anode material [3]. The present work concerns the electrochemical study of iridium oxide materials prepared by Coordinating Etching Precipitating (CEP) and by spray-drying process, the latter been recently investigated for catalysts for PEMWE [3]. The mixed-metal oxide materials obtained by both methods were subjected to different thermal treatments in the range 400â800 ÂșC. The electrochemical characterization was determine using the three-electrode electrochemical setup. Samples heated between 400â500 ÂșC presented the best performance as compared to commercial IrO2, showing at 10 mA/cm2 an overpotential range of 140-160 mV. These results demonstrate the possible use of the synthesis techniques to fabricate porous noble-metal oxides or catalysts for PEMWEs.[1] S. Pei, W. Chao, J. San, S. Xueliang, Z. Jiu, Electrochemical Energy., Florida, CRC Press, 2016. [2] E. Antolini, ACS Catal. 4 (2014), 1426.[3] M. Faustini, M. Giraud, D. Jones, J. RoziĂšre, M. Dupont, T. R. Porter, S. Nowak, M. Bahri, O. Ersen, C. Sanchez, C. BoissiĂšre, C. Tard, J. Peron, Adv. Energy Mater., 9 (2019), 1-11
Electrochemical Active Surface Area Determination of IridiumâBased Mixed Oxides by Mercury Underpotential Deposition
International audienceThe electrochemical surface area (ECSA) is a critical property to describe, analyze and compare electrocatalysts. The determination of the mass activity of a given catalyst is associated with this parameter which can thus lead to materials benchmarking. Reliable and robust methods to measure ECSA are needed, and those have to accommodate different structures, morphologies and compositions. In this study, we investigate mercury underpotential deposition (HgUPD) as a way to estimate ECSA for ultraporous electrocatalysts based on iridium and iridium-molybdenum electrocatalysts for the oxygen evolution reaction. Results reveal a clear agreement between physisorption measurements and HgUPD with excellent reproducibility. The method shows also that pre- and post-catalysis surface area measurements are not affected by the catalytic process on short timescale, opening the possibility of electrocalyst stability and degradation monitoring
Green Synthesis of Water Splitting Electrocatalysts: IrO2 Nanocages via Pearson's Chemistry
International audienceHighly porous iridium oxide structures are particularly well-suited for the preparation of porous catalyst layers needed in proton exchange membrane water electrolyzers. Herein, we report the formation of iridium oxide nanostructured cages, via a water-based process performed at room temperature, using cheap Cu2O cubes as template. In this synthetic approach, based on Pearson's hard and soft acid-base theory, the replacement of the Cu2O core by an iridium shell is permitted by the difference in hardness/softness of cations and anions of the two reactants Cu2O and IrCl3. Calcination followed by acid leaching allow the removal of residual copper oxide cores and leave IrO2 hierarchical porous structures with outstanding activity toward the oxygen evolution reaction. Fundamental understanding of the reaction steps and identification of the intermediates are permitted by coupling a set of ex situ and in situ techniques including operando time-resolved X-ray absorption spectroscopy during the synthesis