177 research outputs found

    BigraphER: rewriting and analysis engine for bigraphs

    Get PDF
    BigraphER is a suite of open-source tools providing an effi- cient implementation of rewriting, simulation, and visualisation for bigraphs, a universal formalism for modelling interacting systems that evolve in time and space and first introduced by Milner. BigraphER consists of an OCaml library that provides programming interfaces for the manipulation of bigraphs, their constituents and reaction rules, and a command-line tool capable of simulating Bigraphical Reactive Systems (BRSs) and computing their transition systems. Other features are native support for both bigraphs and bigraphs with sharing, stochastic reaction rules, rule priorities, instantiation maps, parameterised controls, predicate checking, graphical output and integration with the probabilistic model checker PRISM

    Neutrophils from p40phox−/− mice exhibit severe defects in NADPH oxidase regulation and oxidant-dependent bacterial killing

    Get PDF
    The generation of reactive oxygen species (ROS) by the reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex plays a critical role in the antimicrobial functions of the phagocytic cells of the immune system. The catalytic core of this oxidase consists of a complex between gp91phox, p22phox, p47phox, p67phox, p40phox, and rac-2. Mutations in each of the phox components, except p40phox, have been described in cases of chronic granulomatous disease (CGD), defining their essential role in oxidase function. We sought to establish the role of p40phox by investigating the NADPH oxidase responses of neutrophils isolated from p40phox−/− mice. In the absence of p40phox, the expression of p67phox is reduced by ∼55% and oxidase responses to tumor necrosis factor α/fibrinogen, immunoglobulin G latex beads, Staphylococcus aureus, formyl-methionyl-leucyl-phenylalanine, and zymosan were reduced by ∼97, 85, 84, 75, and 30%, respectively. The defect in ROS production by p40phox−/− neutrophils in response to S. aureus translated into a severe, CGD-like defect in the killing of this organism both in vitro and in vivo, defining p40phox as an essential component in bacterial killing

    Arcadia: a visualization tool for metabolic pathways

    Get PDF
    Summary: Arcadia translates text-based descriptions of biological networks (SBML files) into standardized diagrams (SBGN PD maps). Users can view the same model from different perspectives and easily alter the layout to emulate traditional textbook representations

    Contextualisation of Data Flow Diagrams for security analysis

    Get PDF
    Data flow diagrams (DFDs) are popular for sketching systems for subsequent threat modelling. Their limited semantics make reasoning about them difficult, but enriching them endangers their simplicity and subsequent ease of take up. We present an approach for reasoning about tainted data flows in design-level DFDs by putting them in context with other complementary usability and requirements models. We illustrate our approach using a pilot study, where tainted data flows were identified without any augmentations to either the DFD or its complementary models

    GraphCombEx: A Software Tool for Exploration of Combinatorial Optimisation Properties of Large Graphs

    Full text link
    We present a prototype of a software tool for exploration of multiple combinatorial optimisation problems in large real-world and synthetic complex networks. Our tool, called GraphCombEx (an acronym of Graph Combinatorial Explorer), provides a unified framework for scalable computation and presentation of high-quality suboptimal solutions and bounds for a number of widely studied combinatorial optimisation problems. Efficient representation and applicability to large-scale graphs and complex networks are particularly considered in its design. The problems currently supported include maximum clique, graph colouring, maximum independent set, minimum vertex clique covering, minimum dominating set, as well as the longest simple cycle problem. Suboptimal solutions and intervals for optimal objective values are estimated using scalable heuristics. The tool is designed with extensibility in mind, with the view of further problems and both new fast and high-performance heuristics to be added in the future. GraphCombEx has already been successfully used as a support tool in a number of recent research studies using combinatorial optimisation to analyse complex networks, indicating its promise as a research software tool

    Revisited experimental comparison of node-link and matrix representations

    Get PDF
    Visualizing network data is applicable in domains such as biology, engineering, and social sciences. We report the results of a study comparing the effectiveness of the two primary techniques for showing network data: node-link diagrams and adjacency matrices. Specifically, an evaluation with a large number of online participants revealed statistically significant differences between the two visualizations. Our work adds to existing research in several ways. First, we explore a broad spectrum of network tasks, many of which had not been previously evaluated. Second, our study uses a large dataset, typical of many real-life networks not explored by previous studies. Third, we leverage crowdsourcing to evaluate many tasks with many participants

    Position certainty propagation: a location service for MANETs

    Get PDF
    International audienceLocalization in Mobile Ad-hoc Networks (MANETs) and Wireless Sensor Networks (WSNs) is an issue of great interest, especially in applications such as the IoT and VANETs. We propose a solution that overcomes two limiting characteristics of these types of networks. The first is the high cost of nodes with a location sensor (such as GPS) which we will refer to as anchor nodes. The second is the low computational capability of nodes in the network. The proposed algorithm addresses two issues; self-localization where each non-anchor node should discover its own position, and global localization where a node establishes knowledge of the position of all the nodes in the network. We address the problem as a graph where vertices are nodes in the network and edges indicate connectivity between nodes. The weights of edges represent the Euclidean distance between the nodes. Given a graph with at least three anchor nodes and knowing the maximum communication range for each node, we are able to localize nodes using fairly simple computations in a moderately dense graph

    Formal Modeling and Analysis of the MAL-Associated Biological Regulatory Network: Insight into Cerebral Malaria

    Get PDF
    The discrete modeling formalism of René Thomas is a well known approach for the modeling and analysis of Biological Regulatory Networks (BRNs). This formalism uses a set of parameters which reflect the dynamics of the BRN under study. These parameters are initially unknown but may be deduced from the appropriately chosen observed dynamics of a BRN. The discrete model can be further enriched by using the model checking tool HyTech along with delay parameters. This paves the way to accurately analyse a BRN and to make predictions about critical trajectories which lead to a normal or diseased response. In this paper, we apply the formal discrete and hybrid (discrete and continuous) modeling approaches to characterize behavior of the BRN associated with MyD88-adapter-like (MAL) – a key protein involved with innate immune response to infections. In order to demonstrate the practical effectiveness of our current work, different trajectories and corresponding conditions that may lead to the development of cerebral malaria (CM) are identified. Our results suggest that the system converges towards hyperinflammation if Bruton's tyrosine kinase (BTK) remains constitutively active along with pre-existing high cytokine levels which may play an important role in CM pathogenesis

    MoVam7, a Conserved SNARE Involved in Vacuole Assembly, Is Required for Growth, Endocytosis, ROS Accumulation, and Pathogenesis of Magnaporthe oryzae

    Get PDF
    Soluble NSF attachment protein receptor (SNARE) proteins play a central role in membrane fusion and vesicle transport of eukaryotic organisms including fungi. We previously identified MoSce22 as a homolog of Saccharomyces cerevisiae SNARE protein Sec22 to be involved in growth, stress resistance, and pathogenicity of Magnaporthe oryzae. Here, we provide evidences that MoVam7, an ortholog of S. cerevisiae SNARE protein Vam7, exerts conserved functions in vacuolar morphogenesis and functions in pathogenicity of M. oryzae. Staining with neutral red and FM4-64 revealed the presence of abnormal fragmented vacuoles and an absence of the Spitzenkörper body in the ΔMovam7 mutant. The ΔMovam7 mutant also exhibited reduced vegetative growth, poor conidiation, and failure to produce the infection structure appressorium. Additionally, treatments with cell wall perturbing agents indicated weakened cell walls and altered distributions of the cell wall component chitin. Furthermore, the ΔMovam7 mutant showed a reduced accumulation of reactive oxygen species (ROS) in the hyphal apex and failed to cause diseases on the rice plant. In summary, our studies indicate that MoVam7, like MoSec22, is a component of the SNARE complex whose functions in vacuole assembly also underlies the growth, conidiation, appressorium formation, and pathogenicity of M. oryzae. Further studies of MoVam7, MoSec22, and additional members of the SNARE complex are likely to reveal critical mechanisms in vacuole formation and membrane trafficking that is linked to fungal pathogenicity

    FYVE-Dependent Endosomal Targeting of an Arrestin-Related Protein in Amoeba

    Get PDF
    International audienceBACKGROUND: Visual and β-arrestins are scaffolding proteins involved in the regulation of receptor-dependent intracellular signaling and their trafficking. The arrestin superfamilly includes several arrestin domain-containing proteins and the structurally related protein Vps26. In Dictyostelium discoideum, the arrestin-domain containing proteins form a family of six members, namely AdcA to -F. In contrast to canonical arrestins, Dictyostelium Adc proteins show a more complex architecture, as they possess, in addition to the arrestin core, other domains, such as C2, FYVE, LIM, MIT and SAM, which potentially mediate selective interactions with either lipids or proteins. METHODOLOGY AND PRINCIPAL FINDINGS: A detailed analysis of AdcA has been performed. AdcA extends on both sides of the arrestin core, in particular by a FYVE domain which mediates selective interactions with PI(3)P, as disclosed by intrinsic fluorescence measurements and lipid overlay assays. Localization studies showed an enrichment of tagged- and endogenous AdcA on the rim of early macropinosomes and phagosomes. This vesicular distribution relies on a functional FYVE domain. Our data also show that the arrestin core binds the ADP-ribosylation factor ArfA, the unique amoebal Arf member, in its GDP-bound conformation. SIGNIFICANCE: This work describes one of the 6 arrestin domain-containing proteins of Dictyostelium, a novel and atypical member of the arrestin clan. It provides the basis for a better understanding of arrestin-related protein involvement in trafficking processes and for further studies on the expanding roles of arrestins in eukaryotes
    corecore