47 research outputs found

    Social Learning: What Do Drosophila Have to Offer?

    Get PDF
    SummaryThe recent finding that female Drosophila copy the mate-choice criteria of other females introduces a mainstream model species to the study of how animals use social information

    Transcriptomic responses to location learning by honeybee dancers are partly mirrored in the brains of dance-followers

    Get PDF
    Open Access via the Royal Society agreement This research was funded by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant no. 638873 to E.L.). This funding also supported F.M. for the whole duration of the project.Peer reviewedPublisher PD

    From dyads to collectives: a review of honeybee signalling

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2022-03-11, rev-recd 2022-07-12, accepted 2022-07-24, registration 2022-07-26, pub-electronic 2022-08-22, online 2022-08-22, pub-print 2022-09Publication status: PublishedFunder: H2020 European Research Council; doi: http://dx.doi.org/10.13039/100010663; Grant(s): 638873Abstract: The societies of honeybees (Apis spp.) are microcosms of divided labour where the fitness interests of individuals are so closely aligned that, in some contexts, the colony behaves as an entity in itself. Self-organization at this extraordinary level requires sophisticated communication networks, so it is not surprising that the celebrated waggle dance, by which bees share information about locations outside the hive, evolved here. Yet bees within the colony respond to several other lesser-known signalling systems, including the tremble dance, the stop signal and the shaking signal, whose roles in coordinating worker behaviour are not yet fully understood. Here, we firstly bring together the large but disparate historical body of work that has investigated the “meaning” of such signals for individual bees, before going on to discuss how network-based approaches can show how such signals function as a complex system to control the collective foraging effort of these remarkable social insect societies

    No evidence for negative impacts of acute sulfoxaflor exposure on bee olfactory conditioning or working memory

    Get PDF
    Systemic insecticides such as neonicotinoids and sulfoximines can be present in the nectar and pollen of treated crops, through which foraging bees can become acutely exposed. Research has shown that acute, field realistic dosages of neonicotinoids can negatively influence bee learning and memory, with potential consequences for bee behaviour. As legislative reassessment of neonicotinoid use occurs globally, there is an urgent need to understand the potential risk of other systemic insecticides. Sulfoxaflor, the first branded sulfoximine-based insecticide, has the same mode of action as neonicotinoids, and may potentially replace them over large geographical ranges. Here we assessed the impact of acute sulfoxaflor exposure on performance in two paradigms that have previously been used to illustrate negative impacts of neonicotinoid pesticides on bee learning and memory. We assayed whether acute sulfoxaflor exposure influences (a) olfactory conditioning performance in both bumblebees (Bombus terrestris) and honeybees (Apis mellifera), using a proboscis extension reflex assay, and (b) working memory performance of bumblebees, using a radial-arm maze. We found no evidence to suggest that sulfoxaflor influenced performance in either paradigm. Our results suggest that despite a shared mode of action between sulfoxaflor and neonicotinoid-based insecticides, widely-documented effects of neonicotinoids on bee cognition may not be observed with sulfoxaflor, at least at acute exposure regimes

    Clypeal patterning in the paper wasp Polistes dominulus: no evidence of adaptive value in the wild

    Get PDF
    Status signals function in a number of species to communicate competitive ability to conspecific rivals during competition for resources. In the paper wasp Polistes dominulus, variable black clypeal patterns are thought to be important in mediating competition among females. Results of previous behavioral experiments in the lab indicate that P. dominulus clypeal patterns provide information about an individual's competitive ability to rivals during agonistic interactions. To date, however, there has been no detailed examination of the adaptive value of clypeal patterns in the wild. To address this, we looked for correlations between clypeal patterning and various fitness measures, including reproductive success, hierarchical rank, and survival, in a large, free-living population of P. dominulus in southern Spain. Reproductive success over the nesting season was not correlated with clypeal patterning. Furthermore, there was no relationship between a female's clypeal patterning and the rank she achieved within the hierarchy or her survival during nest founding. Overall, we found no evidence that P. dominulus clypeal patterns are related to competitive ability or other aspects of quality in our population. This result is consistent with geographical variation in the adaptive value of clypeal patterns between P. dominulus populations; however, data on the relationship between patterning and fitness from other populations are required to test this hypothesi

    Clypeal patterning in the paper wasp Polistes dominulus: no evidence of adaptive value in the wild

    Get PDF
    Status signals function in a number of species to communicate competitive ability to conspecific rivals during competition for resources. In the paper wasp Polistes dominulus, variable black clypeal patterns are thought to be important in mediating competition among females. Results of previous behavioral experiments in the lab indicate that P. dominulus clypeal patterns provide information about an individual's competitive ability to rivals during agonistic interactions. To date, however, there has been no detailed examination of the adaptive value of clypeal patterns in the wild. To address this, we looked for correlations between clypeal patterning and various fitness measures, including reproductive success, hierarchical rank, and survival, in a large, free-living population of P. dominulus in southern Spain. Reproductive success over the nesting season was not correlated with clypeal patterning. Furthermore, there was no relationship between a female's clypeal patterning and the rank she achieved within the hierarchy or her survival during nest founding. Overall, we found no evidence that P. dominulus clypeal patterns are related to competitive ability or other aspects of quality in our population. This result is consistent with geographical variation in the adaptive value of clypeal patterns between P. dominulus populations; however, data on the relationship between patterning and fitness from other populations are required to test this hypothesi

    Coupled information networks drive honeybee (Apis mellifera) collective foraging

    Get PDF
    Collective behaviour by eusocial insect colonies is typically achieved through multiple communication networks that produce complex behaviour at the group level but often appear to provide redundant or even competing information. A classic example occurs in honeybee (Apis mellifera) colonies, where both the dance communication system and robust scent‐based mechanisms contribute to the allocation of a colony's workforce by regulating the flow of experienced foragers among known food sources. Here we analysed social connectivity patterns during the reactivation of experienced foragers to familiar feeding sites to show that these social information pathways are not simply multiple means to achieve the same end but intersect to play complementary roles in guiding forager behaviour. Using artificial feeding stations, we mimicked a natural scenario in which two forager groups were simultaneously collecting from distinct patches containing different flowering species. We then observed the reactivation of these groups at their familiar feeding sites after interrupting their foraging. Social network analysis revealed that temporarily unemployed individuals interacted more often and for longer with foragers that advertised a familiar versus unfamiliar foraging site. Due to such resource‐based assortative mixing, network‐based diffusion analysis estimated that reactivation events primarily resulted from interactions among bees that had been trained to the same feeding station and less so from different‐feeder interactions. Both scent‐ and dance‐based interactions strongly contributed to reactivation decisions. However, each bout of dance‐following had an especially strong effect on a follower's likelihood of reactivation, particularly when dances indicated locations familiar to followers. Our findings illustrate how honeybee foragers can alter their social connectivity in ways that are likely to enhance collective outcomes by enabling foragers to rapidly access up‐to‐date information about familiar foraging sites. In addition, our results highlight how reliance on multiple communication mechanisms enables social insect workers to utilise flexible information‐use strategies that are robust to variation in the availability of social information

    Unrelated Helpers in a Primitively Eusocial Wasp: Is Helping Tailored Towards Direct Fitness?

    Get PDF
    The paper wasp Polistes dominulus is unique among the social insects in that nearly one-third of co-foundresses are completely unrelated to the dominant individual whose offspring they help to rear and yet reproductive skew is high. These unrelated subordinates stand to gain direct fitness through nest inheritance, raising the question of whether their behaviour is adaptively tailored towards maximizing inheritance prospects. Unusually, in this species, a wealth of theory and empirical data allows us to predict how unrelated subordinates should behave. Based on these predictions, here we compare helping in subordinates that are unrelated or related to the dominant wasp across an extensive range of field-based behavioural contexts. We find no differences in foraging effort, defense behaviour, aggression or inheritance rank between unrelated helpers and their related counterparts. Our study provides no evidence, across a number of behavioural scenarios, that the behaviour of unrelated subordinates is adaptively modified to promote direct fitness interests

    Social information use and social learning in the Bumblebee (Bombus terrestris)

    No full text
    The "explosion of interest" in animal social learning which has taken place over the last two decades has rarely touched upon invertebrate models. Yet, often social learning does not reflect complex cognitive processing, but instead derives from simple learning processes which also occur when animals learn asocially, shaped or directed by social behaviour mechanisms. In this thesis, I investigate how information provided inadvertently by conspecifics can influence foraging decisions in an animal with a small brain, and yet highly developed learning abilities, the bumblebee. In the first two chapters, I show that foraging bumblebees, when visiting unfamiliar flower species, prefer to probe those individual inflorescences where others are foraging. By comparing individual learning curves when foraging in the absence or presence of experienced conspecifics, I find that this can lead to faster learning about the relative rewards that different flower species offer. I investigate the proximate mechanistic causes of joining behaviour in Chapter four, showing that social information use is a flexible trait which can be modified by learning. In Chapter five, I explore the influence of social cues in learning about "nectar robbing" - a process by which bees remove nectar from 1 flowers without pollination, by biting through the corolla. Finally, in Chapter six, I extend the context of the thesis to address the whether bees might use social information about danger. Taken together, my findings provide a model of how social learning can arise through a combination of simple social behaviour and individual learning, suggesting that social influences on learning in invertebrates may be more common than the current literature would suggest.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore