7,860 research outputs found

    Atresia Ani in Dogs and Cats

    Get PDF

    Concordant cues in faces and voices: testing the backup signal hypothesis

    Get PDF
    Information from faces and voices combines to provide multimodal signals about a person. Faces and voices may offer redundant, overlapping (backup signals), or complementary information (multiple messages). This article reports two experiments which investigated the extent to which faces and voices deliver concordant information about dimensions of fitness and quality. In Experiment 1, participants rated faces and voices on scales for masculinity/femininity, age, health, height, and weight. The results showed that people make similar judgments from faces and voices, with particularly strong correlations for masculinity/femininity, health, and height. If, as these results suggest, faces and voices constitute backup signals for various dimensions, it is hypothetically possible that people would be able to accurately match novel faces and voices for identity. However, previous investigations into novel face–voice matching offer contradictory results. In Experiment 2, participants saw a face and heard a voice and were required to decide whether the face and voice belonged to the same person. Matching accuracy was significantly above chance level, suggesting that judgments made independently from faces and voices are sufficiently similar that people can match the two. Both sets of results were analyzed using multilevel modeling and are interpreted as being consistent with the backup signal hypothesis

    Galactic Cosmic Rays from Supernova Remnants: II Shock Acceleration of Gas and Dust

    Get PDF
    This is the second paper (the first was astro-ph/9704267) of a series analysing the Galactic Cosmic Ray (GCR) composition and origin. In this we present a quantitative model of GCR origin and acceleration based on the acceleration of a mixture of interstellar and/or circumstellar gas and dust by supernova remnant blast waves. We present results from a nonlinear shock model which includes (i) the direct acceleration of interstellar gas-phase ions, (ii) a simplified model for the direct acceleration of weakly charged dust grains to energies of order 100keV/amu simultaneously with the gas ions, (iii) frictional energy losses of the grains colliding with the gas, (iv) sputtering of ions of refractory elements from the accelerated grains and (v) the further shock acceleration of the sputtered ions to cosmic ray energies. The calculated GCR composition and spectra are in good agreement with observations.Comment: to appear in ApJ, 51 pages, LaTeX with AAS macros, 9 postscript figures, also available from ftp://wonka.physics.ncsu.edu/pub/elliso

    Acceleration of Solar Wind Ions by Nearby Interplanetary Shocks: Comparison of Monte Carlo Simulations with Ulysses Observations

    Get PDF
    The most stringent test of theoretical models of the first-order Fermi mechanism at collisionless astrophysical shocks is a comparison of the theoretical predictions with observational data on particle populations. Such comparisons have yielded good agreement between observations at the quasi-parallel portion of the Earth's bow shock and three theoretical approaches, including Monte Carlo kinetic simulations. This paper extends such model testing to the realm of oblique interplanetary shocks: here observations of proton and alpha particle distributions made by the SWICS ion mass spectrometer on Ulysses at nearby interplanetary shocks are compared with test particle Monte Carlo simulation predictions of accelerated populations. The plasma parameters used in the simulation are obtained from measurements of solar wind particles and the magnetic field upstream of individual shocks. Good agreement between downstream spectral measurements and the simulation predictions are obtained for two shocks by allowing the the ratio of the mean-free scattering length to the ionic gyroradius, to vary in an optimization of the fit to the data. Generally small values of this ratio are obtained, corresponding to the case of strong scattering. The acceleration process appears to be roughly independent of the mass or charge of the species.Comment: 26 pages, 6 figures, AASTeX format, to appear in the Astrophysical Journal, February 20, 199

    Development of large radii half-wave plates for CMB satellite missions

    Full text link
    The successful European Space Agency (ESA) Planck mission has mapped the Cosmic Microwave Background (CMB) temperature anisotropy with unprecedented accuracy. However, Planck was not designed to detect the polarised components of the CMB with comparable precision. The BICEP2 collaboration has recently reported the first detection of the B-mode polarisation. ESA is funding the development of critical enabling technologies associated with B-mode polarisation detection, one of these being large diameter half-wave plates. We compare different polarisation modulators and discuss their respective trade-offs in terms of manufacturing, RF performance and thermo-mechanical properties. We then select the most appropriate solution for future satellite missions, optimized for the detection of B-modes.Comment: 16 page

    Identification and tunable optical coherent control of transition-metal spins in silicon carbide

    Get PDF
    Color centers in wide-bandgap semiconductors are attractive systems for quantum technologies since they can combine long-coherent electronic spin and bright optical properties. Several suitable centers have been identified, most famously the nitrogen-vacancy defect in diamond. However, integration in communication technology is hindered by the fact that their optical transitions lie outside telecom wavelength bands. Several transition-metal impurities in silicon carbide do emit at and near telecom wavelengths, but knowledge about their spin and optical properties is incomplete. We present all-optical identification and coherent control of molybdenum-impurity spins in silicon carbide with transitions at near-infrared wavelengths. Our results identify spin S=1/2S=1/2 for both the electronic ground and excited state, with highly anisotropic spin properties that we apply for implementing optical control of ground-state spin coherence. Our results show optical lifetimes of ∌\sim60 ns and inhomogeneous spin dephasing times of ∌\sim0.3 ÎŒ\mus, establishing relevance for quantum spin-photon interfacing.Comment: Updated version with minor correction, full Supplementary Information include

    The spin temperature of high-redshift damped Lyman-α\alpha systems

    Get PDF
    We report results from a programme aimed at investigating the temperature of neutral gas in high-redshift damped Lyman-α\alpha absorbers (DLAs). This involved (1) HI 21cm absorption studies of a large DLA sample, (2) VLBI studies to measure the low-frequency quasar core fractions, and (3) optical/ultraviolet spectroscopy to determine DLA metallicities and velocity widths. Including literature data, our sample consists of 37 DLAs with estimates of the spin temperature TsT_s and the covering factor. We find a strong 4σ4\sigma) difference between the TsT_s distributions in high-z (z>2.4) and low-z (z<2.4) DLA samples. The high-z sample contains more systems with high TsT_s values, ≳1000\gtrsim 1000 K. The TsT_s distributions in DLAs and the Galaxy are also clearly (~6σ6\sigma) different, with more high-TsT_s sightlines in DLAs than in the Milky Way. The high TsT_s values in the high-z DLAs of our sample arise due to low fractions of the cold neutral medium. For 29 DLAs with metallicity [Z/H] estimates, we confirm the presence of an anti-correlation between TsT_s and [Z/H], at 3.5σ3.5\sigma significance via a non-parametric Kendall-tau test. This result was obtained with the assumption that the DLA covering factor is equal to the core fraction. Monte Carlo simulations show that the significance of the result is only marginally decreased if the covering factor and the core fraction are uncorrelated, or if there is a random error in the inferred covering factor. We also find evidence for redshift evolution in DLA TsT_s values even for the z>1 sub-sample. Since z>1 DLAs have angular diameter distances comparable to or larger than those of the background quasars, they have similar efficiency in covering the quasars. Low covering factors in high-z DLAs thus cannot account for the observed redshift evolution in spin temperatures. (Abstract abridged.)Comment: 37 pages, 22 figures. Accepted for publication in Monthly Notices of the Royal Astronomical Societ
    • 

    corecore