53,240 research outputs found

    Supernova Constraints and Systematic Uncertainties from the First Three Years of the Supernova Legacy Survey

    Get PDF
    We combine high-redshift Type Ia supernovae from the first three years of the Supernova Legacy Survey (SNLS) with other supernova (SN) samples, primarily at lower redshifts, to form a high-quality joint sample of 472 SNe (123 low-z, 93 SDSS, 242 SNLS, and 14 Hubble Space Telescope). SN data alone require cosmic acceleration at >99.999% confidence, including systematic effects. For the dark energy equation of state parameter (assumed constant out to at least z = 1.4) in a flat universe, we find w = –0.91^(+0.16)_(–0.20)(stat)^(+0.07)_(–0.14)(sys) from SNe only, consistent with a cosmological constant. Our fits include a correction for the recently discovered relationship between host-galaxy mass and SN absolute brightness. We pay particular attention to systematic uncertainties, characterizing them using a systematic covariance matrix that incorporates the redshift dependence of these effects, as well as the shape-luminosity and color-luminosity relationships. Unlike previous work, we include the effects of systematic terms on the empirical light-curve models. The total systematic uncertainty is dominated by calibration terms. We describe how the systematic uncertainties can be reduced with soon to be available improved nearby and intermediate-redshift samples, particularly those calibrated onto USNO/SDSS-like systems

    Effect of field of view and monocular viewing on angular size judgements in an outdoor scene

    Get PDF
    Observers typically overestimate the angular size of distant objects. Significantly, overestimations are greater in outdoor settings than in aircraft visual-scene simulators. The effect of field of view and monocular and binocular viewing conditions on angular size estimation in an outdoor field was examined. Subjects adjusted the size of a variable triangle to match the angular size of a standard triangle set at three greater distances. Goggles were used to vary the field of view from 11.5 deg to 90 deg for both monocular and binocular viewing. In addition, an unrestricted monocular and binocular viewing condition was used. It is concluded that neither restricted fields of view similar to those present in visual simulators nor the restriction of monocular viewing causes a significant loss in depth perception in outdoor settings. Thus, neither factor should significantly affect the depth realism of visual simulators

    Birkhoff Theorem and Matter

    Full text link
    Birkhoff's theorem for spherically symmetric vacuum spacetimes is a key theorem in studying local systems in general relativity theory. However realistic local systems are only approximately spherically symmetric and only approximately vacuum. In a previous paper, we showed the theorem remains approximately true in an approximately spherically symmetric vacuum space time. In this paper we prove the converse case: the theorem remains approximately true in a spherically symmetric, approximately vacuum space time.Comment: 7 pages, Revtex

    Environmental Effects in the Evolution of Galactic Bulges

    Get PDF
    We investigate possible environmental trends in the evolution of galactic bulges over the redshift range 0<z<0.6. For this purpose, we construct the Fundamental Plane (FP) for cluster and field samples at redshifts =0.4 and =0.54 using surface photometry based on HST imaging and velocity dispersions based on Keck spectroscopy. As a reference point for our study we include data for pure ellipticals, which we model as single-component Sersic profiles; whereas for multi-component galaxies we undertake decompositions using Sersic and exponential models for the bulge and disk respectively. Although the FP for both distant cluster and field samples are offset from the local relation, consistent with evolutionary trends found in earlier studies, we detect significant differences in the zero point of ~=0.2 dex between the field and cluster samples at a given redshift. For both clusters, the environmentally-dependent offset is in the sense expected for an accelerated evolution of bulges in dense environments. By matching the mass range of our samples, we confirm that this difference does not arise as a result of the mass-dependent downsizing effects seen in larger field samples. Our result is also consistent with the hypothesis that - at fixed mass and environment - the star formation histories of galactic bulges and pure spheroids are indistinguishable, and difficult to reconcile with the picture whereby the majority of large bulges form primarily via secular processes within spiral galaxies.Comment: 5 pages, 3 figures, accepted for publication in ApJ Letter

    Production and Decay of Sneutrino and Squarks at Lepton-Hadron Colliders

    Get PDF
    We investigate the potentials of future high energy lepton-proton colliders to detect supersymmetric particles in the charged current type lpν~lq~Xlp\to\tilde\nu_l\tilde qX, l=e,μl=e,\mu, reactions. We also study their decays by using the mass spectrum given in the Technical Design Report of ATLAS Collaboration (SUGRA Point 6 corresponding to large tanβtan\beta).Comment: 6 pages, 1 eps figure, REVTEX

    Waves on Noncommutative Spacetime and Gamma-Ray Bursts

    Get PDF
    Quantum group Fourier transform methods are applied to the study of processes on noncommutative Minkowski spacetime [xi,t]=ıλxi[x^i,t]=\imath\lambda x^i. A natural wave equation is derived and the associated phenomena of {\it in vacuo} dispersion are discussed. Assuming the deformation scale λ\lambda is of the order of the Planck length one finds that the dispersion effects are large enough to be tested in experimental investigations of astrophysical phenomena such as gamma-ray bursts. We also outline a new approach to the construction of field theories on the noncommutative spacetime, with the noncommutativity equivalent under Fourier transform to non-Abelianness of the `addition law' for momentum in Feynman diagrams. We argue that CPT violation effects of the type testable using the sensitive neutral-kaon system are to be expected in such a theory.Comment: 25 page

    The evolution of density perturbations in f(R) gravity

    Full text link
    We give a rigorous and mathematically well defined presentation of the Covariant and Gauge Invariant theory of scalar perturbations of a Friedmann-Lemaitre-Robertson-Walker universe for Fourth Order Gravity, where the matter is described by a perfect fluid with a barotropic equation of state. The general perturbations equations are applied to a simple background solution of R^n gravity. We obtain exact solutions of the perturbations equations for scales much bigger than the Hubble radius. These solutions have a number of interesting features. In particular, we find that for all values of n there is always a growing mode for the density contrast, even if the universe undergoes an accelerated expansion. Such a behaviour does not occur in standard General Relativity, where as soon as Dark Energy dominates, the density contrast experiences an unrelenting decay. This peculiarity is sufficiently novel to warrant further investigation on fourth order gravity models.Comment: 21 pages, 2 figures, typos corrected, submitted to PR

    Numerical evaluation of one-loop QCD amplitudes

    Full text link
    We present the publicly available program NGluon allowing the numerical evaluation of primitive amplitudes at one-loop order in massless QCD. The program allows the computation of one-loop amplitudes for an arbitrary number of gluons. The focus of the present article is the extension to one-loop amplitudes including an arbitrary number of massless quark pairs. We discuss in detail the algorithmic differences to the pure gluonic case and present cross checks to validate our implementation. The numerical accuracy is investigated in detail.Comment: Talk given at ACAT 2011 conference in London, 5-9 Septembe

    The Fundamental Plane of Bulges at Intermediate Redshift

    Full text link
    We report on a new study aimed at understanding the diversity and evolutionary properties of distant galactic bulges in the context of well-established trends for pure spheroidal galaxies. Bulges have been isolated for a sample of 137 spiral galaxies in the GOODS fields within the redshift range 0.1 < z < 1.2. Using proven photometric techniques we determine for each galaxy the characteristic parameters (size, surface brightness, profile shape) in the 4 GOODS-ACS imaging bands of both the disk and bulge components. Using the DEIMOS spectrograph on Keck, precision stellar velocity dispersions were secured for a sizeable fraction of the bulges. This has enabled us to compare the Fundamental Plane of our distant bulges with that of field spheroidal galaxies in a similar redshift range. Bulges in spiral galaxies with a bulge-to-total luminosity ratio (B/T) > 0.2 show very similar patterns of evolution to those seen for low luminosity spheroidals. To first order, their recent mass assembly histories are equivalent.Comment: 4 pages, 2 figures. To appear in the Proceedings of the IAU Symposium 245, "Formation and Evolution of Galaxy Bulges", held at Oxford, U.K., July 2007, Eds. M. Bureau, E. Athanassoula, B. Barbu
    corecore