3,471 research outputs found

    Use of wireless sensors to improve robot lifetime for multi-threat containment

    Get PDF
    Autonomous robots can be used in a decentralized environment to contain threats. While working in this capacity, these motor propelled robots are constantly moving, therefore drawing a large amount of current from the battery. If these algorithms are to be implemented in hardware, it is important to ensure that the robots move only when necessary in an effort to optimize battery life. This work introduces static wireless sensors to assist robots in detecting threats. By having a sufficient number of wireless sensors available to detect threats, it is hypothesized that a similar containment performance can be achieved with less robot movements. When not actively containing threats, the robots may enter a sleep mode thus optimizing energy conservation. The notion of multimode operations has been utilized in other wireless sensor network applications. In the field of cooperative robotics, however, little has been investigated for system performance when both mobile robots and static sensors coexist. This work leverages previously developed multi-threat containment algorithms and the notion of multi-mode operations from wireless sensor network research community and examines the scenarios where wireless sensors can benefit the overall system performance. Battery models and additional sensor and obstacle objects are introduced to a previously developed simulator, MAHESHDAS. Various battery models and parameters are considered to mimic a realistic environment. The sensor nodes occupy a small amount of physical space and therefore assist the robots while also limiting their movements. Robots are assumed to be ground vehicles, and will need to avoid collisions of each other as well as sensor nodes and other obstacles. Repulsion forces are used to model the collision avoidance between the various objects. The percentage of threats contained, the time to contain threats, and the average robot lifetime are compared in different operational scenarios. The simulation results demonstrate that the introduction of wireless sensors improve the average robot lifetime when the threats do not occur too often and when the sensor repulsion force is relatively small. Uniform sensor placement is also shown to perform better than random deployment

    The therapeutic potential of exercise to improve mood, cognition, and sleep in Parkinson's disease

    Full text link
    Published in final edited form as: Mov Disord. 2016 January ; 31(1): 23–38. doi:10.1002/mds.26484.In addition to the classic motor symptoms, Parkinson's disease (PD) is associated with a variety of nonmotor symptoms that significantly reduce quality of life, even in the early stages of the disease. There is an urgent need to develop evidence‐based treatments for these symptoms, which include mood disturbances, cognitive dysfunction, and sleep disruption. We focus here on exercise interventions, which have been used to improve mood, cognition, and sleep in healthy older adults and clinical populations, but to date have primarily targeted motor symptoms in PD. We synthesize the existing literature on the benefits of aerobic exercise and strength training on mood, sleep, and cognition as demonstrated in healthy older adults and adults with PD, and suggest that these types of exercise offer a feasible and promising adjunct treatment for mood, cognition, and sleep difficulties in PD. Across stages of the disease, exercise interventions represent a treatment strategy with the unique ability to improve a range of nonmotor symptoms while also alleviating the classic motor symptoms of the disease. Future research in PD should include nonmotor outcomes in exercise trials with the goal of developing evidence‐based exercise interventions as a safe, broad‐spectrum treatment approach to improve mood, cognition, and sleep for individuals with PD.This work was supported by the National Institute of Mental Health (F31MH102961 to G.O.R.)

    'Workshop for Nagoya Protocol and Plant Treaty National Focal Points in Latin America and the Caribbean’

    Get PDF
    The capacity-building Workshop for National Focal Points in Latin America and the Caribbean on Mutually Supportive Implementation of the Nagoya Protocol and the International Treaty on Plant Genetic Resources for Food and Agriculture, was held 25-28 September 2018 at the International Potato Center (CIP), Lima, Peru. The workshop was attended by over 60 participants, including National Focal Points for the Nagoya Protocol to the Convention on Biological Diversity and the International Treaty on Plant Genetic Resources (CBD) for Food and Agriculture (Plant Treaty), from 16 countries in Latin America and the Caribbean. The workshop was also attended by representatives from the Secretariats of the Plant Treaty and CBD, the International Seed Federation, farmer and indigenous peoples organizations, national and international agricultural research organizations and experts from the region who have been working for decades on access and benefit-sharing policy issues. The objectives of the workshop were to: 1. Strengthen network ties between National Focal Points within each country and across the regions; 2. Analyse challenges and opportunities for implementing the Plant Treaty and the Nagoya Protocol in a mutually supportive manner, and in ways that advance complementary policy goals, such as climate change adaptation, and improving the livelihoods of indigenous peoples and local communities; 3. Equip participants with tools to help address ‘real life’ scenarios where mutually supportive implementation is important, and 4. Identify the kinds of additional support that countries need to implement the Plant Treaty and Nagoya Protocol in mutually supportive ways

    Should jaundiced infants be breastfed?

    Get PDF
    No studies have demonstrated that cessation of breastfeeding in jaundiced infants improves clinical outcomes, although this has only been studied in term infants. Temporarily disrupting or supplementing breastfeeding in jaundiced infants is associated with premature cessation of breastfeeding (strength of recommendation [SOR]: B, based on a nonrandomized, nonblinded trial). Jaundiced breastfed term infants have no significant difference in length of phototherapy, and no increased rate of exchange transfusion or kernicterus compared with jaundiced bottle-fed term infants (SOR: B, based on a low-quality randomized controlled trial and a prospective cohort study). In light of the association of breastfeeding with improved health outcomes,mothers of jaundiced term infants should be encouraged to continue breastfeed

    Galaxy-Galaxy Lensing in the Hubble Deep Field: The Halo Tully-Fisher Relation at Intermediate Redshift

    Full text link
    A tangential distortion of background source galaxies around foreground lens galaxies in the Hubble Deep Field is detected at the 99.3% confidence level. An important element of our analysis is the use of photometric redshifts to determine distances of lens and source galaxies and rest-frame B-band luminosities of the lens galaxies. The lens galaxy halos obey a Tully-Fisher relation between halo circular velocity and luminosity; the typical lens galaxy, at a redshift z = 0.6, has a circular velocity of 210 +/-40 km/s at M_B = -18.5, if q_0 = 0.5. Control tests, in which lens and source positions and source ellipticities are randomized, confirm the significance level of the detection quoted above. Furthermore, a marginal signal is also detected from an independent, fainter sample of source galaxies without photometric redshifts. Potential systematic effects, such as contamination by aligned satellite galaxies, the distortion of source shapes by the light of the foreground galaxies, PSF anisotropies, and contributions from mass distributed on the scale of galaxy groups are shown to be negligible. A comparison of our result with the local Tully-Fisher relation indicates that intermediate-redshift galaxies are fainter than local spirals by 1.0 +/- 0.6 B mag at a fixed circular velocity. This is consistent with some spectroscopic studies of the rotation curves of intermediate-redshift galaxies. This result suggests that the strong increase in the global luminosity density with redshift is dominated by evolution in the galaxy number density.Comment: Revised version with minor changes. 13 pages, 7 figures, LaTeX2e, uses emulateapj and multicol styles (included). Accepted by Ap

    HIV Infection and the Central Nervous System: A Primer

    Get PDF
    The purpose of this brief review is to prepare readers who may be unfamiliar with Human Immunodeficiency Virus/Acquired Immune Deficiency Syndrome (HIV/AIDS) and the rapidly accumulating changes in the epidemic by providing an introduction to HIV disease and its treatment. The general concepts presented here will facilitate understanding of the papers in this issue on HIV-associated neurocognitive disorders (HAND). Toward that end, we briefly review the biology of HIV and how it causes disease in its human host, its epidemiology, and how antiretroviral treatments are targeted to interfere with the molecular biology that allows the virus to reproduce. Finally, we describe what is known about how HIV injures the nervous system, leading to HAND, and discuss potential strategies for preventing or treating the effects of HIV on the nervous system

    Controls on the distribution of cosmogenic 10Be across shore platforms

    Get PDF
    Quantifying rates of erosion on cliffed coasts across a range of timescales is vital for understanding the drivers and processes of coastal change and for assessing risks posed by future cliff retreat. Historical records cover at best the last 150 years; Cosmogenic radionuclides, such as 10Be could allow us to look further into past to assess coastal change at millenial timescales. CRNs accumulate in-situ near the Earth surface and have been used extensively to quantify erosion rates, burial dates and surface exposure ages in terrestrial landscapes over the last three decades. More recently, applications in rocky coast settings have quantified the timing of mass wasting events, determined long-term-averaged rates of cliff retreat and revealed the exposure history of shore platforms. In this contribution, we developed and explored a numerical model for the accumulation of 10Be on eroding shore platforms. In a series of numerical experiments, we investigated the influence of topographic and water shielding, dynamic platform erosion processes, the presence and variation in beach cover, and heterogeneous distribution of erosion on the distribution of 10Be across shore platforms. Results demonstrate that, taking into account relative sea level change and tides, the concentration of 10Be is sensitive to rates of cliff retreat. Factors such as topographic shielding and beach cover, act to reduce 10Be concentrations on the platform, and may result in overestimation of cliff retreat rates if not accounted for. The shape of the distribution of 10Be across a shore platform can potentially reveal whether cliff retreat rates are declining or accelerating through time. Measurement of 10Be in shore platforms has great potential to allow us to quantify long-term rates of cliff retreat and platform erosion

    Should home apnea monitoring be recommended to prevent SIDS?

    Get PDF
    While home apnea monitoring may find an increased incidence of apnea and bradycardia in preterm infants compared with term infants, no association links these events with sudden infant death syndrome (SIDS). Apnea of prematurity is not a proven risk factor for SIDS. Since apnea of prematurity has not been shown to be a precursor to SIDS, home apnea monitoring for the purpose of preventing SIDS cannot be recommended (strength of recommendation [SOR]: B, based on a single prospective cohort study and multiple case-control studies). Neonates with significant neurologic or pulmonary disease may benefit from apnea monitoring (SOR: C, expert opinion)

    The Role of Surgery, Radiosurgery and Whole Brain Radiation Therapy in the Management of Patients with Metastatic Brain Tumors

    Get PDF
    Brain tumors constitute the most common intracranial tumor. Management of brain metastases has become increasingly complex as patients with brain metastases are living longer and more treatment options develop. The goal of this paper is to review the role of stereotactic radiosurgery (SRS), whole brain radiation therapy (WBRT), and surgery, in isolation and in combination, in the contemporary treatment of brain metastases. Surgery and SRS both offer management options that may help to optimize therapy in selected patients. WBRT is another option but can lead to late toxicity and suboptimal local control in longer term survivors. Improved prognostic indices will be critical for selecting the best therapies. Further prospective trials are necessary to continue to elucidate factors that will help triage patients to the proper brain-directed therapy for their cancer

    System Identification for Model Predictive Control of Building Region Temperature

    Get PDF
    Model predictive control (MPC) is a promising technology for energy cost optimization of buildings because it provides a natural framework for optimally controlling such systems by computing control actions that minimize the energy cost while meeting constraints. In our previous work, we developed a cascaded MPC framework capable of minimizing the energy cost of building zone temperature control applications. The outer loop MPC computes power set-points to minimize the energy cost while ensuring that the zone temperature is maintained within its comfort constraints. The inner loop MPC receives the power set-points from the outer loop MPC and manipulates the zone temperature set-point to ensure that the zone power consumption tracks the power set-points computed by the outer layer MPC. Since both MPCs require a predictive model, a modeling framework and system identification (SI) methodology must be developed that is capable of accurately predicting the energy usage and zone temperature for a diverse range of building zones. In this work, two grey-box models for the outer and inner loop MPCs are developed and parameterized. The model parameters are fit to input-output data for a particular zone application so that the resulting model accurately predicts the behavior of the zone. State and disturbance estimation, which is required by the MPCs, is performed via a Kalman filter with a steady-state Kalman gain. The model parameters and Kalman gains of each grey-box model are updated in a sequential fashion. The significant disturbances affecting the zone temperature (e.g., outside temperature and occupancy) may typically be considered as a slowly varying disturbance (with respect to the control time-scale). To prevent steady-state offset in the identified model caused by the slowly time-varying disturbance, a high-pass filter is applied to the input-output data to filter out the effect of the disturbance. The model parameters are subsequently computed from the filtered input-output data without the Kalman filter applied. The Kalman gain is also adjusted as the model parameters are updated to ensure stability of the resulting observer and for optimal estimation. After the model parameters are computed, the steady-state Kalman gain matrix is parameterized and the parameters are updated using the prediction error method with the unfiltered input-output data and the updated model parameters. The Kalman gain update methodology is advantageous because it avoids the need to estimate the noise statistics. Stability of the observer is verified after the parameters are updated. If the updated parameters result in an unstable observer, the update is rejected and the previous parameters are retained. Additionally, since a standard quadratic cost function that penalizes the squared prediction error is sensitive to data outliers in the prediction error method, a piecewise defined cost function is employed to reduce its sensitivity to outliers and to improve the robustness of the SI methodology. The cost function penalizes the squared prediction error when the error is within certain thresholds. When the error is outside the thresholds, the cost function evaluates to a constant. The SI algorithm is applied to a building zone to assess the approach
    corecore