37,031 research outputs found

    Beyond the Standard Model for Montaneros

    Get PDF
    These notes cover (i) electroweak symmetry breaking in the Standard Model (SM) and the Higgs boson, (ii) alternatives to the SM Higgs boson including an introduction to composite Higgs models and Higgsless models that invoke extra dimensions, (iii) the theory and phenomenology of supersymmetry, and (iv) various further beyond topics, including Grand Unification, proton decay and neutrino masses, supergravity, superstrings and extra dimensions.Comment: Based on lectures by John Ellis at the 5th CERN-Latin-American School of High-Energy Physics, Recinto Quirama, Colombia, 15 - 28 Mar 2009, 84 pages, 35 figure

    Precipitation strengthened high strength, high conductivity Cu-Cr-Nb alloys produced by chill block melt spinning

    Get PDF
    A series of Cu-based alloys containing 2 to 10 a/o Cr and 1 to 5 a/o Nb were produced by chill block melt spinning (CBMS). The melt spun ribbons were consolidated and hot rolled to sheet to produce a supersaturated Cu-Cr-Nb solid solution from which the high melting point intermetallic compound Cr2Nb could be precipitated to strengthen the Cu matrix. The results show that the materials possess electrical conductivities in excess of 90 percent that of pure Cu at 200 C and above. The strengths of the Cu-Cr-Nb alloys were much greater than Cu, Cu-0.6 Cr, NARloy-A, and NARloy-Z in the as-melt spun condition. The strengths of the consolidated materials were less than Cu-Cr and Cu-Cr-Zr below 500 C and 600 C respectively, but were significantly better above these temperatures. The strengths of the consolidated materials were greater than NARloy-Z, at all temperatures. The GLIDCOP possessed similar strength levels up to 750 C when the strength of the Cu-Cr-Nb alloys begins to degrade. The long term stability of the Cu-Cr-Nb alloys was measured by the microhardness of aged samples and the growth of precipitates. The microhardness measurements indicate that the alloys overage rapidly, but do not suffer much loss in strength between 10 and 100 hours which confirms the results of the electrical resistivity measurements taken during the aging of the alloys at 500 C. The loss in strength from peak strength levels is significant, but the strength remains exceptionally good. Transmission electron microscopy (TEM) of the as-melt spun samples revealed that Cr2Nb precipitates formed in the liquid Cu during the chill block melt spinning, indicating a very strong driving force for the formation of the precipitates. The TEM of the aged and consolidated materials indicates that the precipitates coarsen considerably, but remain in the submicron range

    Design and fabrication of a radiative actively cooled honeycomb sandwich structural panel for a hypersonic aircraft

    Get PDF
    The panel assembly consisted of an external thermal protection system (metallic heat shields and insulation blankets) and an aluminum honeycomb structure. The structure was cooled to temperature 442K (300 F) by circulating a 60/40 mass solution of ethylene glycol and water through dee shaped coolant tubes nested in the honeycomb and adhesively bonded to the outer skin. Rene'41 heat shields were designed to sustain 5000 cycles of a uniform pressure of + or - 6.89kPa (+ or - 1.0 psi) and aerodynamic heating conditions equivalent to 136 kW sq m (12 Btu sq ft sec) to a 422K (300 F) surface temperature. High temperature flexible insulation blankets were encased in stainless steel foil to protect them from moisture and other potential contaminates. The aluminum actively cooled honeycomb sandwich structural panel was designed to sustain 5000 cycles of cyclic in-plane loading of + or - 210 kN/m (+ or - 1200 lbf/in.) combined with a uniform panel pressure of + or - 6.89 kPa (?1.0 psi)

    Graphite/copper alloy interfacial energies determined using the sessile drop method

    Get PDF
    Graphite surfaces are not wet by pure copper. This lack of wetting is responsible for a debonding phenomenon that was found in continuous graphite fiber/copper matrix composites materials subjected to elevated temperatures. By suitably alloying copper, its capability to wet graphite surfaces can be enhanced. In situ measurements of graphite/copper alloy wetting angles were made using the sessile drop method. Interfacial energy values were calculated based upon these measurements

    B-Meson Observables in the Maximally CP-Violating MSSM with Minimal Flavour Violation

    Get PDF
    Additional sources of CP violation in the MSSM may affect B-meson mixings and decays, even in scenarios with minimal flavour violation (MFV). We formulate the maximally CP-violating and minimally flavour-violating (MCPMFV) variant of the MSSM, which has 19 parameters, including 6 phases that violate CP. We then develop a manifestly flavour-covariant effective Lagrangian formalism for calculating Higgs-mediated FCNC observables in the MSSM at large tan(beta), and analyze within the MCPMFV framework FCNC and other processes involving B mesons. We include a new class of dominant subleading contributions due to non-decoupling effects of the third-generation quarks. We present illustrative numerical results that include effects of the CP-odd MCPMFV parameters on Higgs and sparticle masses, the B_s and B_d mass differences, and on the decays B_s --> mu+ mu-, B_u --> tau nu and b --> s gamma. We use these results to derive illustrative constraints on the MCPMFV parameters imposed by D0, CDF, BELLE and BABAR measurements of B mesons, demonstrating how a potentially observable contribution to the CP asymmetry in the b --> s gamma decay may arise in the MSSM with MCPMFV.Comment: 47 pages, 8 eps figures, comments and references added, accepted for publication in Physical Review D, Eq.(3.2) correcte

    Production and processing of Cu-Cr-Nb alloys

    Get PDF
    A new Cu-based alloy possessing high strength, high conductivity, and good stability at elevated temperatures was recently produced. This paper details the melting of the master alloys, production of rapidly solidified ribbon, and processing of the ribbon to sheet by hot pressing and hot rolling

    Physics opportunities with future proton accelerators at CERN

    Get PDF
    We analyze the physics opportunities that would be made possible by upgrades of CERN's proton accelerator complex. These include the new physics possible with luminosity or energy upgrades of the LHC, options for a possible future neutrino complex at CERN, and opportunities in other physics including rare kaon decays, other fixed-target experiments, nuclear physics and antiproton physics, among other possibilities. We stress the importance of inputs from initial LHC running and planned neutrino experiments, and summarize the principal detector R&D issues.Comment: 39 page, word document, full resolution version available from http://cern.ch/pofpa/POFPA-arXive.pd

    Baryon Magnetic Moments and Proton Spin: A Model with Collective Quark Rotation

    Full text link
    We analyse the baryon magnetic moments in a model that relates them to the parton spins Δu\Delta u, Δd\Delta d, Δs\Delta s, and includes a contribution from orbital angular momentum. The specific assumption is the existence of a 3-quark correlation (such as a flux string) that rotates with angular momentum Lz\langle L_z \rangle around the proton spin axis. A fit to the baryon magnetic moments, constrained by the measured values of the axial vector coupling constants a(3)=F+Da^{(3)}=F+D, a(8)=3FDa^{(8)}=3F-D, yields Sz=0.08±0.13\langle S_z \rangle = 0.08 \pm 0.13, Lz=0.39±0.09\langle L_z \rangle = 0.39 \pm 0.09, where the error is a theoretical estimate. A second fit, under slightly different assumptions, gives Lz=0.37±0.09\langle L_z \rangle = 0.37 \pm 0.09, with no constraint on Sz\langle S_z \rangle. The model provides a consistent description of axial vector couplings, magnetic moments and the quark polarization Sz\langle S_z \rangle measured in deep inelastic scattering. The fits suggest that a significant part of the angular momentum of the proton may reside in a collective rotation of the constituent quarks.Comment: 16 pages, 3 ps-figures, uses RevTeX. Abstract, Sec. II, III and IV have been expande

    Kinetics and Inhibition Studies of the L205R Mutant of cAMP-Dependent Protein Kinase Involved in Cushing’s Syndrome

    Get PDF
    Overproduction of cortisol by the hypothalamus–pituitary–adrenal hormone system results in the clinical disorder known as Cushing\u27s syndrome. Genomics studies have identified a key mutation (L205R) in the α‐isoform of the catalytic subunit of cAMP‐dependent protein kinase (PKACα) in adrenal adenomas of patients with adrenocorticotropic hormone‐independent Cushing\u27s syndrome. Here, we conducted kinetics and inhibition studies on the L205R‐PKACα mutant. We have found that the L205R mutation affects the kinetics of both Kemptide and ATP as substrates, decreasing the catalytic efficiency (kcat/KM) for each substrate by 12‐fold and 4.5‐fold, respectively. We have also determined the IC50 and Ki for the peptide substrate‐competitive inhibitor PKI(5–24) and the ATP‐competitive inhibitor H89. The L205R mutation had no effect on the potency of H89, but causes a \u3e 250‐fold loss in potency for PKI(5–24). Collectively, these data provide insights for the development of L205R‐PKACα inhibitors as potential therapeutics
    corecore