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Abstract

These notes cover (glectroweak symmetry breakimg the Standard Model
(SM) and the Higgs boson, (iglternatives to the SM Higgs bosamcluding
an introduction to composite Higgs models and Higgslessatsdtiat invoke
extra dimensions, (iii) the theory and phenomenologgugiersymmetryand
(iv) variousfurther beyond topigsincluding Grand Unification, proton decay
and neutrino masses, supergravity, superstrings anddirtensions.

1 The Standard Model, electroweak symmetry breaking and the kygs boson

In this first Lecture, we review the electroweak sector of$tendard Model (SM) (for more detailed ac-
counts, see, e.g., [1-3]), with particular emphasis on #iare of electroweak symmetry breaking. The
theory grew out of experimental information on charged-@nirweak interactions, and of the realisatior
that the four-point Fermi description ceases to be validriakgs = 600 GeV [3]. Electroweak theory
was able to predict the existence of neutral-current iotemas, as discovered by the Gargamelle Collak
oration in 1973 [4]. One of its greatest subsequent sucsesas the detection in 1983 of thiE* and
Z9 bosons [5-8], whose existences it had predicted. Over timeks to the accumulating experimental
evidence, the&SU(2);, ® U(1)y electroweak theory anfU (3) quantum electrodynamics, collectively
known as the Standard Model, have come to be regarded asrieetodescription of electromagnetic,
weak and strong interactions up to the energies that have firebed so far. However, although the
SM has many successes, it also has some shortcomings, asoneditate. In subsequent Lectures we
discuss ideas for rectifying (at least some of) these defeete also [9-11].

The patrticle content of the SM is summarized in Table 1. Witlhie SM, the electromagnetic
and weak interactions are described by a Lagrangian thamisngtric under local weak isospin and
hypercharge gauge transformations, described using&h@); @ U(1)y group (theL subindex refers
to the fact that the weakU (2) group acts only the left-handed projections of fermionestat” is the
hypercharge). We can write ti##/(2);, @ U(1)y part of the SM Lagrangian as

1 174
L= —;FE

+ Dy + hc.
+  Yiyivj¢ + hc.
+ ‘D/L¢|2 -V ((ﬁ) . (1)

This is short enough to write on a T-shirt!

The first line is the kinetic term for the gauge sector of tleebweak theory, with running over
the total number of gauge fields: three associated #itt{2),, which we shall caIlB,i, Bﬁ, Bz, and
one withU(1)y, which we shall call4,,. Their field-strength tensors are

Fi, = 0,B;—0,B;+ 95bcaBZB§ fora=1,2,3 (2)
f/u/ = 81/-/4” - aMAV . (3)

*Based on lectures by John Ellis at the 2009 CERN-CLAF Schddigh-Energy Physics, Medellin, Colombia.
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Table 1: Particle content of the Standard Model with a minimal Higgster.

Bosons Scalars
YW W=, 2% g1 8 ¢ (Higgs)
Fermions
Quarks (each with 3 colour charges) Leptons

G G) e () () ()

In EqQ. (2),¢ is the coupling constant of the weak-isospin graiip(2)., and thes;,., are its structure
constants. The last term in this equation stems from theAfmiian nature ofSU(2). At this point,
all of the gauge fields are massless, but we will see latersipetific linear combinations of the four
electroweak gauge fields acquire masses through the Higgsamism.

The second line in Eq. (1) describes the interactions betwee matter fields), described by
Dirac equations, and the gauge fields.

The third line is the Yukawa sector and incorporates theagteons between the matter fields anc
the Higgs field,¢, which are responsible for giving fermions their massesniectroweak symmetry
breaking occurs.

The fourth and final line describes the scalar or Higgs sedthe first piece is the kinetic term
with the covariant derivative defined here to be

.y .
DM:aM+%AHY+%T-BM, )
whereg’ is theU (1) coupling constant, andl andr = (71, 72, 73) (the Pauli matrices) are, respectively,
the generators df (1) andSU(2). The second piece of the final line of (1) is the Higgs poténfigs).

Whereas the first two lines of (1) have been confirmed in mdfgratit experiments, there i®

experimental evidence for the last two lines and one of thim wigjectives of the LHC is to discover
whether it is right, needs modification, or is simply wrong.

1.1 The Higgs mechanism iU (1)
To explain the Higgs mechanism of mass generation, we figgyapto the gauge grou@/(1), and

then extend it to the full electroweak gro{i/(2);, @ U(1)y. Thus, we first consider the following
Lagrangian for a single complex scalar field:

with the potential defined as

V(¢¢) = 17 (°¢) + A (6°9)* (6)
wherey? and\ > 0 are real constants. This Lagrangian is clearly invariantearglobalU (1) phase
transformations

¢ — P, ("

for o some rotation angle. Equivalently, it is invariant undef@(2) rotational symmetry, which is
made evident by writingC in terms of the decomposition of the complex scalar field tato real fields
¢1 andga: ¢ = @1 + ida.

If we choosen? > 0 in (8), the sole vacuum state h&s) = 0. Perturbing around this vacuum
reveals that, in this case, the scalar-sector Lagrangiaplygfactors into two Klein—Gordon Lagrangians,
one for¢,; and the other for,, with a common mass. The symmetry of the original Lagranggan
preserved in this case.
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However, wheru? < 0, the Lagrangian (5) exhibits spontaneous breaking oftiie) global
symmetry, which introduces a massless scalar particle Rramsva Goldstone boson, as we now show
In order to make manifest this breaking of thi¢1) symmetry present in Eq. (5), we first minimize the
potential (6) so as to identify the vacuum expectation vatuev.e.v., of the scalar field. To do this, we
first write the Higgs potential as

V(0') = 1 (61 +03) + A (61 + 03) ®)
and note that minimization with respect#b¢ yields the value
O+ g5 =—u?/ (2\) 9)

i.e., there is a set of equivalent minima lying around a eimfl radius/—u2/ (2)), whenp? < 0 as
assumed. The quanta of the Higgs field arise when a partigntamd state is chosen and perturbed
Reflecting the appearance of spontaneous symmetry breakingay, without loss of generality, choose

for instance
(ﬁl’vac =V —MQ/ (2)\) = U/\/§ y ¢2,vac =0. (10)
Perturbations around this vacuum may be parametrized by
n/V2=1—v/V2 . /V2=¢, (11)

so that the perturbed complex scalavis- (v + 1 + i€) /v/2, wheren and¢ are real fields. In terms of
these, the Lagrangian becomes

1 2 1
¢ = [z @m -5 + 309 0.0
A 2
- 3 [(v +n)? + 52}2 — pPon — %52 — %MW : (12)

The first and second terms describe two scalar particledirgte;, is massive witr’m?7 =—p?>0(we
recall thatu? < 0), and the second, is massless, the Goldstone boson.

We now discuss how this spontaneous symmetry breaking essiftself in the presence of a
U(1) gauge field. For this purpose, we make the Lagrangian (5)ianaunder local/ (1) phase trans-
formations, i.e.,
¢ — e @y (13)

This requires the introduction of a gauge fiedg that transforms as follows undéi(1):
AL — A, + (1/q) 0 () , (14)
and replacing the space-time derivatives by covarianvagves
Du = 8;¢ + iun ) (15)

whereq is the conserved charge. Replacing the derivatives in Bar(® adding a kinetic term for the
A, field, the Lagrangian becomes

1

L =[Oy —igAu) 9 [(0" +igA") ¢] =V (¢7¢) — 7F" Fluy - (16)

The last term in this equatioril /4) F** F),,, with F,, = 0,A,, — 0,.A,, is the kinetic term, which is
separately invariant under the transformation (14) of thege field.
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We now repeat the minimization of the potential¢) and write the Lagrangian in terms of the
perturbations around the ground state, Egs. (11):

1 1 . X
L = {5 [(8“77) (Oum) — ,u2772] + 5 (0"€) (8,,€) — ZFWFW n §q2v2A“AH}

2
+ v AP A+ %A“A,m2 +q (") Ay (v+n) —q(9"n) A
2 A 2
— MQvn—%f—g[(ern)JréQ]Q—%' (17)

The first three terms again describe a (real) scalar partjclef mass,/—u2 and a massless Goldstone
boson,£. The fourth term describes the free gauge field. Howeveryedsepreviously the Lagrangian
described a massless boson field [see Eq. (12)], now it egentaterm proportional tod,,.A*, which
gives the gauge field a mass of

mg = qu, (18)

from which we see that the boson field has acquired a massthatportional to the vacuum expectation
value of the Higgs field. Indeed, the last two terms in the flinst of Eq. (12) are identical with the Proca
Lagrangian for &/ (1) gauge boson of mass.

The rest of the terms in Eq. (12) define couplings between édsfil#, » and&, among which is a
bilinear interaction couplingl* andd,£. In order to give the correct propagating particle intetgtion
of (12), we must diagonalize the bilinear terms and remoigetédrm. This is easily done by exploiting
the gauge freedom of the,, field to replace

1
‘AH — .AL = ‘AM + q—vﬁuf ) (19)
which is accompanied by the local phase transformation

¢— ¢ =e DG = (v4n)/V2. (20)

After making this transformation, the fiefdno longer appears, and the Lagrangian (12) takes the sil
plified form

1 1Y 2,2 1 1% q2v2 wl oAl

where the .. represent trilinear and quadrilinear interactions.

The interpretation of (21) is that the Goldstone bogdhat appeared when the gloda(1) sym-
metry was broken by the choice of an asymmetric ground staenw? < 0 has been absorbed (or
‘eaten’) by the gauge fieldl,, with the effect of generating a mass. Another way to undatsthis is
to recall that, whereas a massless gauge boson has only gmeedeof freedom, or polarization states
(which are transverse), a massive gauge boson must havedgltmgitudinal) polarization state. In
the Higgs mechanism, this is supplied by the Goldstone boktre spontaneously-brokén(1) global
symmetry.

At first sight, the Higgs mechanism may seem somewhat aafifidirrom one point of view, it
is merely a description of the breaking of electroweak sytmyneather than an explanation of how a
massless gauge boson may become massive. As Quigg saythfl2lectroweak symmetry is broken
becauseu2 < 0, and we must choos@a2 < 0, because otherwise electroweak symmetry is not broke
From another point of view, thenly consistent formulation of an interacting massive gaugehdsvia
the Higgs mechanism, and the spontaneous breaking of sysnimet mathematical ruse for describing
this phenomenon.
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1.2 The Higgs mechanismirSU(2)r, ® U(1)y
Following closely in both spirit and notation the book by @ui12], we now consider the weak-isospin

doublet
14
L= ( . >L , (22)

with the left-handed neutrino and electron states defined by

1 1
VL:§(1—’)/5)V , eL:§(1—’y5)e. (23)

The operator(1 — v5) /2 is of course the left-handed helicity projector, ande are solutions of the
free-field Dirac equation. Within the SM, we consider thetriao to be massless, and it does not havi
a corresponding right-handed component, i.e.,

1
1/325(14-’}’5)1/:0. (24)

Hence, the only right-handed leptary, constitutes a weak-isospin singlet, i.e.,

1
R:eR:§(1+’y5)e. (25)
We write initially the Lagrangian as
L = »Cgauge+ ﬁleptons (26)
1 1
Egauge = —ZFSVFGHV _ me/f/w (27)
= g - g g
[/|ept0ns = R <8ﬂ + Z§AMY> R + LZ.’Y“ (8/1' + 25./4“}/ + 257' . BU) L s (28)

where the field-strength tenso#s,, and f,,,, were defined in Egs. (2) and (3), respectively. Hefg2
is the coupling constant associated to the hyperchargedrou)y-, andg/2 is the coupling to the weak-
isospin groupSU (2) .. So far, we are presented with four massless bosdps B}, B, B;); the Higgs
mechanism will select linear combinations of these to pcedilnree massive bosong’¢-, Z°) and a
massless oneyj.

The Higgs field is now a compleXU (2) doublet
o= (% ). @9)
with ¢1 and¢? scalar fields. We need to add the Lagrangian
Lriggs = (Du9)! (D9) =V (970) . (30)
with the Higgs potential given by analogy to Eq. (6) as
v (6'6) = w2 (s10) + 2 (610) . (31)

with A > 0. We should also include the interaction Lagrangian betvileierscalar field and the fermionic
matter fields, which occurs through Yukawa couplings,

Lyvukawa = —Cle [%TL n E¢R} . (32)

As we see later, these terms give rise to masses for the rfextt@ons.
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vipo

Fig. 1: Scalar potential” (¢'¢) with A > 0 andu? < 0

A plot of the Higgs potential is presented in Fig. 1.2, where see that¢) = 0 is an unstable
local minimum of the effective potential ji> < 0, and that the minimum is at son{e) # 0 with an
arbitrary phase, leading to spontaneous symmetry breakligmizing the Higgs potential, we obtain

0 T _ 2 9 9 0 \2]
sio” (69) =i+ 20 =i+ 0 [0 + (] <0 @
Choosinggz. = 0 and¢l,. = +/—u2/ (2)), the v.e.v. of the scalar field becomes
0
= 15 ) o

with v = y/—u? /). Selecting a particular v.e.v. breaks, of course, I8tith{2);, andU (1)y symmetries.
Nevertheless, an invariance under tiél)gy symmetry is preserved, with the charge operator as t
generator. In the preceding section, we saw one exampleeajeheral theorem that, for every broker
generator (i.e., every generator that does not leave theumamvariant), there would (in the absence o
the Higgs mechanism) be a Goldstone boson.

In general, a generatdf leaves the vacuum invariant if

9 ()0 = (1 +iag) ()0 = (¥)o , (35)
which is satisfied whe@(¢)y = 0. Let’s test whether the generators $/(2), ® U(1)y satisfy this
condition:

(01 0 [ v/V2

e = (23) ()= (*57)
wion = (07 (0 )= () @)
1 0 0 0
wor = (3 %) () ()
Y{dho = (d)o- (39)
Thus, none of the generators leave the vacuum invariant.eMexvwe note that
Qlého = 5 (rs+¥) (8)o =0, (40)

150



BEYOND THE STANDARD MODEL FOR MONTANEROS

which is what we expected: the linear combination of gelesatorresponding to electric charge remain:
unbroken. Correspondingly, as we shall now see, whilst tteqn remains massless, the other thre
gauge bosons acquire mass.

To see this, we now consider perturbations around the clabigcuum. The full perturbed scalar

field is 6. 0
oos (5) (r )

However, in analogy to what we did for tfi&(1) Higgs in the previous section to rotate the Goldston
boson¢ away, we are also able here to gauge-transform the sgalad the gauge and matter fields, i.e.

;o —i&-T B 0
v ¢‘6Xp< % )¢‘<<v+m/ﬂ>' (42)
T-B, — T-B;L (43)
L — L’_exp<_Z§v'T>L, (44)

while the A, and R remain invariant. It is possible to show thatB), = 7- B, —{ x B, - 7 —
(1/9) 0u (& 7).

In the unitary gauge, we can write the perturbed state as

0

and the Lagrangian in the Yukawa sector, Eq. (32), becomes

v+

Lyukawa = —Ge |:€R¢T ( Zﬁ ) + (V1 er) ¢€R} = -G, \/577

(éReL —I—ELeR) . (46)

Defininge = (e, 1) ande = (ez, er)” yields

Lyukawa = _ﬁée - ) ee, (47)

so that the electron has acquired a mass
Me = Gev/\/§. (48)

Clearly, this mechanism may be applied to all the SM fermiarith the general feature that their masse:
are proportional to their Yukawa couplings to the Higgs fiel@his implies that the preferred decays of
a Higgs boson into generic fermiorfsare into heavier species, as long as the Higgs mas: ;.

To see the effect of spontaneous symmetry breaking on tharsetor Lagrangianpiggs in
Eg. (30), it is useful to calculate first

so= (1), (@9)
so that ) A
)= () ()
and we also need ., .
Dyt = 06+ 5-AY 6 + 57 Byo (51)

The Higgs couplings to quarks also induce their Cabibbo-afabhi-Maskawa mixing — see Eq. (93) below.
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whose first term is simply

0
0,0 = . 52
o < 8u77/\/§ ) (52)
Using Egs. (36)—(39), we calculate the second and thirdgerm,

ig i g 0
7Auy¢ - 7A/L¢ - 7»’4# < (U—H?) /\/5 > ) (53)

Hence,

. (55)
J30un+ (7)) § (i Ay — igBY) )
and

" 2 . 1 1 2
(D"6) (D) = S (v +0)* [Bl, = iBEP + 5 (9um) (9"n) + 5 w+1)* (9 Ay — 9B])” . (56)
With this, the scalar-sector Lagrangian becomes

1 w I TR Ry / 312
Lriggs = 4 5 (Gu) (0"n) — = +§[g 1B, — iB;| +(g.A“—gBM)}

1 4
- {g (1 + 20m) |21 B} — B2 + (g Ay — 9B3)’|

1 At 2,2
- 1774—)\1)773—%/\112772— (/\v3+,u2v)77— <L+ e >} . (57)

4 2

From the second term inside the first curly brackets, we s#dlibn field has acquired a mass; indeed,
it is the Higgs boson, with non-zero mass. The terms insidesédtond curly brackets either describe
interactions between the gauge and Higgs fields, or areatisghat do not affect the physics.

It is convenient to define the charged gauge fidM§ as linear combinations of the massles:
fieIdsB}t andB?, i.e.,

o
1 c 12
e = BuF By 58
=T (58)

and, analogously,

3
g - —9AutgBy (59)
S

A+ 9B}
A, = w (60)

Writing the original fieldsA,,, BZL in terms of the new fields, we have

V2 n s V2, N
By = 5 Wy+W)) , By=— (W, -Wi), (61)

! /

s 9 9 _ g g
B, = /P § g 2 (Au + g,Zu) s Ay = 72 0 (AM p ZM> . (62)

Making these replacements in the broken scalar-sectorabagin, Eq. (57), leads to

1 2 2 2 2 2 2+ 1'2Y 2
Lriggs = |5 (0"n) (Oun) — %772] + %W* MW+ Y9 w- W+ %

: 747,
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o, (63)

and it is evident now that while the photon fielt, is massless due to the unbrokiiil)gm symmetry
(i.e., the symmetry undef?>(®) rotations), the vector bosofi&* and Z° have masses

mw =gv/2 , mz=(v/2)Vg>+g?2. (64)

We see again that the Higgs couplings to other particlesisncase thélV* and Z°, are related to their
masses.

We also see that the masses of the neutral and charged weedketion bosons are related througt

myz =mwy1+ ¢ 2/g>. (65)
Experimentally, the weak gauge boson masses are knownhahb@uracy to be [13]
my = 80.399 +0.023 GeV , myz =91.1875 +0.0021 GeV, (66)

which can be compared in detail with (65) only after the ismuas of radiative corrections. Meanwhile,
the current experimental upper limit on the photon massedas plasma physics, is very stringent:
m., < 107! eV [14]. For the Higgs mass, we see from (57) that

my = —2u° . (67)

A priori, however, there is no theoretical prediction within then8td Model, sinceg: is not deter-
mined by any of the known parameters of the Standard Modéér lvee will see various ways in which
experiments constrain the Higgs mass.

We can introduce a weak mixing andglg- to parametrize the mixing of the neutral gauge boson:
defined by

tan (Ow) =¢'/g, (68)

so that .

sin () = ——2—— (69)

9

With this, we can write, from Egs. (59) and (60),

cos (Ow) =

Z, = —sin(0w) A, + cos(Ow) B, (70)
A, = cos(Ow) A, +sin (Ow) Bi . (71)

The relation (65) between the masse3$i6t and Z° becomes
mw = mgcos (fw) , (72)

and it is common practice to define the ratio

2
myy
= —7—. 73

p m? cos? () (73)
According to the Standard Model, this is equal to unity atttke level, a prediction that has been well
tested by experiment, including radiative correctionse Value ofsin? (6yy) is obtained from measure-
ments of theZ pole and neutral-current processes, and depends on thenaimation prescription. The
2008 Particle Data Group review [13] states valuesiof (Ay) = 0.2319(14) andp = 1.0004F5-005.

Therefore, after the spontaneous breaking of the elecaoW& (2), @ U (1)y symmetry, we have
ended up with what we desired: three massive gauge bo¥bs £°) that mediate weak interactions,
one massless gauge bosoat) €orresponding to the photon, and an extra, massive, Higgsrb@ ).
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1.3 QCD

The QCD Lagrangian has a structure similar to that of thetmleeak Lagrangian [13], being also a
gauge theory, but based on the graif(3) and without spontaneous symmetry breaking:

1 a fa pv . i j i
EQCD - _ZF“VF # +1 Z %’Y“ (D,u)l'j % - Z mq%%i y (74)
q q
Fi, = 04AL—0,A% — gsfarc AL AS (75)
M

(Dp)y; = 00y +igs y 2” Al (76)

with g, the strong coupling constanf,;. the SU(3) structure constants, and (i = 1,...,8) the
generators 06U (3) (which can be taken to be the eight traceless Gell-Mann ogsfyi Note also that

wﬁl is the free-field Dirac spinor representing a quark of colcamd flavourg and theAf, (a = 1,...,8)

are the eight gluon fields. As is well known, QCD and non-Adreljauge theories possess the propert
of asymptotic freedoma, = g2 /47 obeys the renormalization-group equation (RGE) that deters
its evolution as a function of the effective scéle

do
Qd(zg — 28ps + ..., (77)
where 5

andn, is the number of quark flavours with mass&s(). In addition to (76), which specifies QCD at the
perturbative level, its full specification of its vacuum la¢ thon-perturbative level requires an additiona
angle parametef,cp, that violates both parity P and CP [1%]

1.4 Parameters of the Standard Model

The transformation from being one of the possible explanatiof electromagnetic, weak and stroncg
phenomena into a description in outstanding agreementexiperiments is reflected in the dozens o
electroweak precision measurements available today §137]. These are sensitive to quantum correc
tions at and beyond the one-loop level, which are essewmtiadlitaining agreement with the data. The
calculations of these corrections rely upon the renorrahliity (calculability) of the SM®, and depend
on the masses of heavy virtual particles, such as the togk gual the Higgs boson and possibly othel
particles beyond the SM. The consistency with the data mayskd to constrain the masses of thes
particles.

Many of these observables have quadratic sensitivity tortags of the top quark, e.g.,

2a m?

5 -

— 79
167 sin? (Oy) m%, (79)

sty = 1—my/m% > —
This effect was used before the discovery of the top quarkrédlipt successfully its mass [18], and
the consistency of the prediction with experiment can bel tie&onstrain possible new physics beyonc
the SM, particularly mass-squared differences betweespisartner particles, that would contribute
analogously to (79). Many electroweak observables areladgrithmically sensitive to the mass of the

Higgs boson, e.g., )
o o Sa (My

2The upper limit on the electric dipole moment of the neutmistus thatfocp| < O(1077) [13].
3A crucial aspect of this is cancellation of anomalous trlamtiagrams between quarks and leptons, which may be a hint
an underlying Grand Unified Theory — see Lecture 4.
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whenmpy > myy. If there were no Higgs boson, or nothing to do its foladiative corrections such
as (80) would diverge, and the SM calculations would becoraanimgless. Two examples of precision
electroweak observables, namely the coupling ofZHénoson to leptons and the mass of #fieboson,
are shown in Fig. 2.

0233 AuguleOOIQ : h _‘ : : August‘zoog : : : :
mgzlflsﬁjoldg gz:// , 1 —LEP2 and Tevatron (prel.)
80.5 -~ LEP1 and SLD
68% CL
, o, \ 1
5 £0.232- 1 3
P O
e — 80.4
n =
E .y
i m B 1 ----------------
0231 1 aa : 80.3.
] 1 Jm
68% CL 1
83.6 83.8 84 84.2 150 175 200
r, [MeV] m, [GeV]

Fig. 2: Left: LEP and SLD measurementsfiZ 6y and the leptonic decay width of tH&”, I';;, compared with
the SM prediction for different values of, andmy. Right: The predictions fom,; andmy, made in the SM
using LEP1 and SLD data (dotted mango-shaped contour) fiereint values ofn, compared with the LEP2
and Tevatron measurements (ellipse). The arrows show tligaadhl effects of the uncertainty in the valueaf,,
attheZ° peak [16].

Table 2 and Fig. 1.4 [17] compare the predicted (fitted) armmkamentally measured values for
several parameters of the Standard Model; the agreemesmiadlyibetter thano. This is a remarkable
success for a theory that, as we have seen, can be writtenidawaty a few lines.

The agreement of the precision electroweak observabléstidtSM can be used to prediety,
just as it was used previously to predigt. Since the early 1990s [19], this method has been used
tighten the vise on the Higgs, providing ever-strongerdations that it is probably relatively light, as
hinted in Fig. 4. The latest estimate of the Higgs mass is [16]

my = 89732 GeV. (81)

Although the central value is somewhat below the lower liafitt14.4 GeV set by direct searches a
LEP [20], there is consistency at thesllevel, and no significant discrepancis priori, the relatively
light mass range (81) suggests that the Higgs boson inserafzdtively weakly, with a small quartic
coupling A\, though there is no theoretical consensus on this: seeshagdion in the next Lecture.

This success is very impressive. However, our rejoicing ugeth by the fact that to specify the
SM we need at least 19 input parameters in order to calculgteigal processes, namely:

e three coupling parameters, which we can choose to be thegstmupling constanty;, the fine
structure constantyem, and the weak mixing anglein? (6yy);

¢ two parameters that specify the shape of the Higgs potepfiadnd \ (or, equivalently,n and
my Of my);

e six quark masses (or the six Yukawa couplings for the quarks)

4See Lecture 2 for a discussion of possible alternatives.
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Table 2: Fit and experimental values of some SM quantities, as obdaising the&sfitter package [17]. For all
the observables listed, except (LEP) andA; (SLD), the fit values shown are the results of ‘complete fite',
the results of using all the inputs, including the input ead the parameter that is being fit, to calculate the resul
For the two exceptions, the fit values shown were calculasathuall inputs except their own. Consult [17] for a

description of each observable.

Parameter Input value Fit value
Mz [GeV]  91.1875+0.0021  91.1876 + 0.0021
'z [GeV] 2.4952 £0.0023  2.4956 + 0.0015
o1 41.540 £ 0.037 41.478 £ 0.014
RY 20.767 £ 0.025 20.741 £ 0.018
A 0.0171 £0.0010  0.01624 + 0.0002
A; (LEP) 0.1465 +0.0033  0.1473 % 0.0009
A; (SLD) 0.1513 + 0.0021 0.14651 00007
sin? ol (Qrg)  0.2324 +0.0012  0.23151+700019
AL 0.0707 £0.0035  0.0737 + 0.0005
A2 0.0992 + 0.0016 0.103210- 0007
A, 0.670 + 0.027 0.667970 00035
A 0.923 +0.020 0.93463 000007
RY 0.1721 £0.0030  0.17225 + 0.00006
RY 0.21629 & 0.00066  0.21577 + 0.00005
A (M2) 2768 + 22 2764722
My [GeV] 80.399 4 0.023 80.3711000%
Ty [GeV] 2.098 + 0.048 2.092 + 0.001
. [GeV] 1.25 +0.09 1.25 +0.09
my, [GeV] 4.20 4+ 0.07 4.20 4 0.07
m; [GeV] 1731+ 1.3 173.6 + 1.2

o four parameters (three mixing angles and one weak CP-wiglanhgle) for the Cabibbo-Kobayashi-
Maskawa matrix [see Eqg. (93) below];

e three charged-lepton masses (or the corresponding Yukawaicgs);

e one parameter to allow for non-perturbative CP violatioQ@D, focp.

Moreover, because we now know that neutrinos have mass ahdhéty mix (see, e.g., [21, 22]), the
Standard Model must be extended to incorporate this faarefare, we also need to specify three neu
trino masses and three mixing angles plus a CP-violatingefa the neutrino mixing matrix, bringing

the grand total to 26 parameters. Additionally, if neutsiiorn out to be Majorana particles, so that the
are their own antiparticles, two more CP-violating phasssdrio be specified. Notice that at least 20 o
the parameters relate to flavour physics.

Many of the ideas for physics beyond the SM that are discukkded have been motivated by
attempts to reduce the number of its parameters, or unddrgteir origins, or at least to make them
seem less unnatural, as discussed in subsequent Lectures.

1.5 Bounds on the Standard Model Higgs boson mass
1.5.1 Upper bounds from unitarity

As already emphasized, if there were no Higgs boson, andngoémalogous to replace it, the Standarc
Model would not be a calculable, renormalizable theory. sTihcompleteness is reflected in the be:
haviours of physical quantities as the Higgs mass incred3es most basic example of thisTig ™1/~
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Fig. 3: Comparison between direct measurements and the resulfg asang theGfitter package [17]

scattering [23], whose high-energywave amplitude grows withn g

4G

T ~ ——=m3. 82
Imposing the unitarity bound’| < 1, one finds the upper limt/? < 47v/2/G r, which is strengthened
to
MY < BTV2 ) ey (83)
3Gp

when one makes a coupled analysis includingZH&° channel.

A related effect is seen in the behaviour of the quartic selipling \ of the Higgs field. Like
any of the Standard Model parameteksis subject to renormalizationia loop corrections. Loops of
fermions, most importantly the top quark, tenddiecrease\ as the renormalization scaleincreases,
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Fig. 4: The? likelihood function form; in a global electroweak fit. The blue band around the (alnpzstibolic
solid curve represents the theoretical uncertainty: theraturves indicate the effects of different calculatiohs o
the renormalization of...,, and of including low-energy data. The shaded regions amsetbacluded by LEP and
by the Tevatron [16].

whereas loops of bosons tendit@rease). In particular, if the Higgs masg m,, the positive renor-
malization due to the Higgs self-coupling itself is domifhyamnd\ increases uncontrollably with. The
larger the value ofng, the larger the low-energy value af and the smaller the value df at which A
blows up. In general, one should regard the limiting valud pélso for smallern;, as a scale where
novel non-perturbative dynamics must set in. This behangseen in the upper part of Fig. 5, where we
see, for example, thatif.y = 170 GeV, thenA ~ 10'° GeV, whereas ifng = 300 GeV, the coupling

A blows up at a scald ~ 10° GeV. One may ask: under what circumstances dogs~ A itself? The
answer is whem;; ~ 700 GeV: if the Higgs boson were heavier than this mass, the Higtiscoupling
would blow up at a scale smaller than its mass. In this caggydfhysics would necessarily be describe:
by some new strongly-interacting theory, cf., the techioigotheories described in Lecture 2.

1.5.2 Lower bounds from vacuum stability

Looking at lower values ofng in Fig. 5, we see an uneventful rangerof; extending down tonyg ~
130 GeV, where (as far as we know) the SM could continue to be adllithe way to the Planck scale. At
lowermyg, there is a band below which the present electroweak vacwomnes unstable at some scale
A < 10" GeV. For example, if the Higgs is slightly above the preseqeemental lower limit from
LEP,myg ~ 115 GeV, the present electroweak vacuum is unstable againalydeto a vacuum with
{|¢|) ~ 107 GeV. This instability is due to the negative renormalizataf \ by the top quark, which
overcomes the positive renormalization due\titself, and drives\ < 0 °.

If mg is only slightly below the top band, and above the middle band true that the present

5The widths of the boundary bands indicate the uncertaiiitisese calculations.
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Fig. 5: The scaleA at which the two-loop RGEs drive the quartic SM Higgs coupliron-perturbative (upper
curves), and the scalk at which the RGEs create an instability in the electroweakiuan (lower curves). The
widths of the bands reflect the uncertaintiesiip and o, (mz) (added quadratically). The perturbativity upper
bound (sometimes referred to as ‘triviality’ bound) is givler A = 7 (lower bold line [blue]) and\ = 2«
(upper bold line [blue]). Their difference indicates thedhetical uncertainty in this bound. The absolute vacuur
stability bound is displayed by the light shaded [greenjhavhile the less restrictive finite-temperature and zerc
temperature metastability bounds are medium [blue] ankl steded [red], respectively. The grey hatched aree
indicate the LEP [20] and Tevatron [24] exclusion domairniguFe taken from [25].

electroweak vacuum is in principle unstable against destya state with(|¢|) > A, but it would not
have decayed during the conventional thermal expansioheotniverse at finite temperatures. Below
the middle band but above the lowest band, the vacuum wouwiel thecayed to a correspondingly large
value of(|¢|) at some finite temperature, but its present-day (low-teatpeg) lifetime is longer than the
age of the Universe. Below the lowest band, the lifetime fway to a vacuum witkl¢|) > A would be
less than the present age of the Universe at low temperaandsve should really watch out!

In fact, as we see shortly, such low valuesigf are almost excluded by LEP searches for the Sl
Higgs boson, as also seen in Fig. 5.

One could in principle avoid this vacuum instability by mdiucing some new physics at an energy
scale< A: what type of physics [26]? One needs to overcome the negetigcts of renormalization of
A by loops with the top quark circulating. The sign of renorietion could be reversed by loops with
some boson circulating, potentially restoring the stgbitif the electroweak vacuum. However, then
one should consider the renormalization of the quartic hoggetween the Higgs and the new boson
It turns out that the renormalization of this coupling is umrt very unstable, and that the best way tc
stabilize this coupling would be to introduce a new fermion.

These new scalars and fermions look very much like the partakethe top quark and Higgs
bosons, respectively, that are predicted by supersymri8tyIn Lecture 3 we will study in more detalil
the renormalization of mass and vacuum parameters in asguparetric theory.

1.5.3 Results from searches at LEP and the Tevatron

As seen in Fig. 2, searches for the reactiorn~ — Z° + H at LEP established a lower limit on the
possible mass of a SM Higgs boson [20]:

my > 114.4 GeV (84)
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Fig. 6: Dependence o/ of the Ax? function obtained from the global fit of the SM parametersrecjsion
electroweak data [25], excluding (left) or including (rtythe results from direct searches at LEP and the Tevatrc

at the 95% confidence level. The lower limit (84) is somewlhghér than the central value of the SM
Higgs mass preferred by the global precision electroweg®1ix, but there is no significant tension be-
tween these two pieces of information. Figure 6 showsthikelihood function obtained by combining
the LEP search and the global electroweak fit. At the 95% cenéid level, one finds [20]

my < 157 GeV, 186 GeV, (85)

depending whether one uses precision electroweak date,alomcludes also the lower limit (84) from
the direct search at LEP. Thg function obtained by combining the LEP limit (84) with theepision
electroweak fit is shown in Fig. 6. Notice the little blipraty ~ 115 GeV, reflecting the hint of a signal
found in the last run at the highest LEP energies: this wag ainthe 1.7s level, insufficient to claim
any evidence.

Searches at the Fermilab Tevatron collider have recerdlyest to exclude a region of mass for
the SM Higgs boson, as also seen in Figs. 2, 5 and 6. At the tiwgiting, these searches exclude [24]

163 GeV < mpg < 166 GeV (86)

at the 95% confidence level, as seen in Fig. 7. At smaller rsatise Tevatron 95% confidence level
upper limit on Higgs production and decay is only a few timigger than the SM expectations, and the
integrated luminosity is expected to double over the nenptof years.

Figure 6 also includes the effect on tié likelihood function of combining the Tevatron search
with the global electroweak fit and the LEP search. We see frosnthat the ‘blow-up’ regionng >
180 GeV is strongly disfavoured: above the 99% confidence ldviile Tevatron data are included,
compared with 96% if they are dropped [25]. The combinatiballathe data yields a 68% confidence
level range [17]

my = 11677% GeV. (87)

The Tevatron is expected to continue running until late 2@ttumulating?(10)/fb of integrated lumi-
nosity. That could be sufficient to exclude a SM Higgs boscer @l the mass range between (84) anc
(86), which would exclude all the preferred range (85) — ayvmtriguing possibility! Alternatively,
perhaps the Tevatron will find some evidence for a Higgs begtna mass within this range?
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Fig. 8: Left: the dominant mechanisms for producing a SM Higgs b@dhe LHC at 14 TeV, and right: the most
important branching ratios for a SM Higgs boson, taken fr@i [

1.5.4 LHC prospects

The search for the Higgs boson is one of the main raisonsed@tthe LHC. Many mechanisms may
make important contributions to SM Higgs production at th#. If the Higgs boson is relatively light,
as suggested above, the dominant production mechanisreg@eeted to bgg — H andW W~ —
H, where théV'* are radiated off incoming quarkg:— W¢'.

As already mentioned, the fact that Higgs couplings to ofaticles are proportional to their
masses implies that the Higgs prefers to decay into the éstgyarticles that are kinematically accessible
As seen in Fig. 8, this means that a Higgs lighter than30 GeV prefers to decay intbh, whereas a
heavier Higgs prefers to decay int6 *W~— and Z°Z". However, couplings to lighter particles can
become important under certain circumstances. For exampiliést there is no tree-level coupling to
gluons because they are massless, one is induced by loopawf particles such as the top quark. Fo
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boson as a function afi;;. Right: the significance expected by ATLAS [29] for a SM Hidgsson, assuming
10/fb of data at 14 TeV.

the same reason, there is no tree-level Higgs coupling ttopbpbut the Higgs boson may decay intc
v via top andWW ¥ loops. Although this decay has a very small branching rittis, very distinctive
experimentally, and may be detectable at the LHC if the SMyBligeighs< 130 GeV.

Figure 9 displays estimates of the sensitivities of CMStYIEF8] and ATLAS (right) [29] to a
SM Higgs boson. A fraction of an inverse femtobarn per experit may suffice to exclude a Higgs
boson over a large range of masses frem 50 GeV to~ 400 GeV. An integrated luminosity 1/fb
per experiment would be needed to discover a Higgs bosonawittass in a similar range, but more
luminosity would be required ifny < 150 GeV. Indeed, a luminosity 5/fb per experiment would be
needed for discovery over all the displayed rangengf, down to the LEP limit. One way or another,
the LHC will be able determine whether or not there is a SM Hilggson.

1.6 Issues beyond the Standard Model

The Standard Model, however, is not expected to be the firsakigition of the fundamental interactions,
but rather an effective low-energy (up to a few TeV) mandédeh of a more complete theory.

Some of the outstanding questions in the Standard Model are:

e How is electroweak symmetry broken? In other words, how do gauge bosons acquire mas:
We have seen that the Standard Model incorporates the Higghanism in the form of a single
weak-isospin doublet with a non-zero v.e.v. in order to gateethe gauge boson masses, but thi
is not the only possible way in which the electroweak symynean be broken. For instance,
there could be more than one Higgs doublet, the Higgs coul imeudo-Goldstone boson (with
a low mass relative to the mass scale of some new interaaifoglectroweak symmetry could be
broken by a condensate of new particles bound by a new stnd@action. We cover a few of the
possibilities in Lecture 2.

e How do fermions acquire mass7Electroweak symmetry breaking is a hecessary, but not a sut
cient, condition to generate the fermion masses. Therenalsds to be a mechanism that generate
the required Yukawa couplings [see Eqg. (46)] between thaitars and the (effective) Higgs field.
The separation between electroweak symmetry breakinghengeneration of fermion masses is
made evident in models of dynamical symmetry breaking, sisctechnicolour (see Section 2),
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where the breaking is carried out by the formation of a coedtnof particles associated to a new
interaction, a process which, while breaking electrowsgakraetry and giving masses to the gauge
bosons, does not necessarily give masses to the fermioisssiittation is resolved by adding new
interactions which are responsible for generating theifemmasses. Within the Standard Model,
there are no predictions for the values of the Yukawa cogplinMoreover, the values required
to generate the correct masses for the three charged legmdnthe six quarks span six orders of
magnitude, which presumably makes the mechanism for therggon of the couplings highly
non-trivial.

e The hierarchy problem. Why should the Higgs mass remain lawy < 1 TeV, in the face of di-
vergent quantum loop corrections? Following [3], the Higgsss can be expanded in perturbatior
theory as

A2
iy (0?) =g+ Ca [k (88)
p

wherem? ; is the tree-level (classical) contribution to the Higgs ssguaredg is the coupling
constant of the the theory, is a model-dependent constant, akds the reference scale up to
which the Standard Model is assumed to remain valid. Theyiate represent contributions at
loop level and are apparently quadratically divergent.h#ré is no new physics, the reference
scale is high, like the Planck scale,~ Mp; ~ 10 GeV or, in Grand Unified Theories (GUTSs),
A ~ Mgy =~ 105 — 10'6 GeV (see Lecture 4). Clearly, both choices result in largesotions
to the Higgs mass. In order for these to be small, there areatteonatives: either the relative
magnitudes of the tree-level and loop contributions areyfibened to yield a net contribution
that is small (a feature that is disliked by physicists, bhtolr Nature might have implemented),
or there is a new symmetry, like supersymmetry, that pretdw Higgs mass, as discussed ir
Lecture 3.

e The vacuum energy problem The value of the scalar potential, Eq. (31), at the v.@i)p of the

Higgs boson is
2,2

t _ K
v ((elen) =5 <0 (89)
Hence, because the Higgs massi§ = —2u2, this corresponds to a uniform vacuum energy
density
m%vQ
PH = — ] (90)

Takingv = (GF\/§)_1/2 ~ 246 GeV for the Higgs v.e.v. and using the current experiment:

lower bound on the Higgs mass [13}y = 114.4 GeV, we have
—pr > 10% GeVt. (91)

On the other hand, if the apparent accelerated expansidmedf/hiverse — originally inferred
from observations of type 1A supernovae [30] — is attributied non-zero cosmological constant
corresponding to~ 70% of the total energy density of the Universe [13], the reqliiemergy
density should be

pvac ~ 10746 GeV* | (92)

which is at least 54 orders of magnitude lower than the cpoeding density from the Higgs field,
and of the opposite sign! The character of this dark enengaiies unexplained [31, 32], and will
probably remain so until we have a full quantum theory of gyav

e How is flavour symmetry broken? Part of the flavour problem in the Standard Model is, o
course, related to the widely different mass assignmentieofermions ascribed to the Yukawa
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couplings, which also set the mixing angles between flavodrraass eigenstates. Mixing oc-
curs both in the quark and the lepton sectors, the formergbeamametrized by the Cabibbo—
Kobayashi—-Maskawa (CKM) matrix and the latter, by the Malakagawa—Sakata (MNS) matrix.
These are complex rotation matrices, and can each be wirittenms of three mixing angles and
one CP-violating phasé)[13]:

0

C12C13 $12€13 S13€
_ i i
V = | —s12c03 — c12523513€"  c12c23 — S12523513¢€" 593C13 ; (93)
i i
512823 — €12€23513€"°  —C12523 — $12C23513€"  C23C13

wherec;; = cos (0;5), si; = sin (0;5). While the off-diagonal elements in the quark sector ar
rather small (of ordet0~! to 10~3), so that there is little mixing between quark families, e t
lepton sector the off-diagonal elements (except[¥ains].5, which is close to zero) are of order
1, so that the mixing between neutrino families is large. $tendard Model does not provide an
explanation for this difference.

e What is dark matter? The observation that galaxy rotation curves do not fall ohwadial
distance from the galactic centre can be explained by misiglthe existence of a new type of
weakly-interacting mattedark matter in the halos of galaxies. Supporting evidence from the co:
mic microwave background (CMB) indicates that the dark eratiakes up- 25% of the energy
density of the Universe [33]. Dark matter is usually thoughibe composed of neutral relic parti-
cles from the early Universe. Within the Standard Model trieos are the only candidate massive
neutral relics. However, they contribute only with a norized density of), > 1.2(2.2) x 103
if the mass hierarchy is normal (inverted), or no more théf if the lightest mass eigenstate lies
around 1 eV, that is, if the hierarchy is degenerate [3]. @rofthat, structure formation indicates
that dark matter should be cold, i.e., non-relativistichat ime of structure formation, whereas
neutrinos would have been relativistic particles. Witlia Minimal Supersymmetric extension of
the Standard Model (MSSM), the lightest supersymmetritngarcalled aneutraling is a popular
dark matter candidate [34].

e How did the baryon asymmetry of the Universe arise?The antibaryon density of the Universe
is negligible, whilst the baryon-to-photon ratio has beetednined, using WMAP dathof the
CMB [35] to be B

Do =T o 6.12(19) x 10710, (94)

nv n7

"’]:

whereny, mp, andn., are the number densities of baryons, antibaryons, and photespectively.
The fact that the ratio is not zero is intriguing considetingt, in a cosmology with an inflationary
epoch, conventional thermal equilibrium processes woalglyielded an equal number of parti-
cles and antiparticles. In 1967, Sakharov [36] establighesk necessary conditions (more fully
explained in [37]) for the particle—antiparticle asymmetf the Universe to be generated:

1. violation of the baryon numbe#s;
2. microscopic C and CP violation;
3. loss of thermal equilibrium.

Otherwise, the rate of creation of baryons equals the rawesfruction, and no net asymme-
try results. In the perturbative regime, the Standard MadelservesB; however, at the non-
perturbative level B violation is possible through the triangle anomaly [15].eTbss of thermal
equilibrium may occur naturally through the expansion & tniverse, and CP violation enters
the Standard Model through the complex phase in the CKM mfit]. However, the CP viola-
tion observed so far, which is described by the Kobayashsislaa mechanism of the Standard

5We use here values from the three-year WMAP analysis [38jerahan the five-year analysis [33], in order to be constste
with the values quoted by the Particle Data Group [13] surgrtesles.
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Model, is known to be insufficient to explain the observedigabf the ration, and new physics
is needed. One possible solution lies in leptogenesis soshavhere the baryon asymmetry is a
result of a previously existing lepton asymmetry generdtgthe decays of heavy sterile neutri-
nos [38].

e Quantization of the electric charge It is an experimental fact that the charges of all observe
particles are simple multiples of a fundamental chargeckvhie can take to be the electron charge
e. Dirac [39-41] proved that the existence of even a singlemaagmonopole (a magnet with only
one pole) is sufficient to explain the quantization of the&le charge, but the particle content of
the Standard Model (see Table 1) does not include magnetimpates. Hence, in the absence of
any indication for a magnetic monopole, the explanationhafrge quantization must lie beyond
the Standard Model. Indeed, so far there has only been ortlided® monopole detection event
in a single superconducting loop [42], in 1982, and the moi®mterpretation of the event has
now been largely discounted. One expects monopoles to lyenvassive and non-relativistic at
present, in which case time-of-flight measurements in thevelocity regime f = v/c < 1)
become important. The best current direct upper limit orstifgermassive monopole flux comes
from cosmic-ray observations [13]:

Pipole < 1.0 x 1072 em™2srtst (95)

for 1.1x 10~* < 8 < 0.1. An alternative route towards charge quantizatioviasa Grand Unified
Theory (GUT) (see Lecture 4). Such a theory implies the erist of magnetic monopoles that
would be so massive that their cosmological density woulsupgpressed to an unobservably smal
value by cosmological inflation.

e How to incorporate gravitation? One of the most obvious shortcomings of the Standard Mod
is that it does not incorporate gravitation, which is deseuli on a classical level by general rela-
tivity. However, the consistency of our physical theorieguires a quantum theory of gravity. The
main difficulty in building a quantum field theory of gravitg its non-renormalizability. String
theory [43] and loop quantum gravity [44] constitute attésngt building a quantized theory of
gravity. If one could answer this question, one would suetbp be able to solve the dark energy
problem. Conversely, solving the dark energy problem predaly requires a complete quantum
theory of gravity.

2 Electroweak symmetry breaking beyond the Standard Model
2.1 Theorists are getting cold feet

After so many years, it seems that we will soon know whetheigg$iboson exists in the way predicted
by the Standard Model, or not. Closure at last!

Like the prospect of an imminent hanging, the prospect ofiimemt Higgs discovery concentrates
wonderfully the minds of theorists, and many theorists witld feet are generating alternative models
as prolifically as monkeys on their laptops. These serventrauable purpose of providing benchmarks
that can be compared and contrasted with the SM Higgs. Exrpetalists should be ready to search fo
reasonable alternatives, already at the Tevatron and itke &HC once it is up and running, and they
should be on the look-out for tell-tale deviations from th@ @edictions if a Higgs boson should appear.

Even within the SM with a single elementary Higgs boson, tjaes are being asked. As dis-
cussed in the previous section, within this framework theeeimental data seem to favour a light Higgs
boson. However, the interpretation of the precision eteatiak data has been challenged. Even if on
accepts the data at face value, the SM fit may need to take @cmuat non-renormalizable, higher-
dimensional interactions that could conspire to permit avlee SM Higgs boson? In this section, in
addition to these possibilities, we explore several meishas of electroweak symmetry breaking be-
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yond the minimal Higgs, i.e., a single element&f#/(2) Higgs doublet whose potential is arranged tc
have a non-zero v.e.v.

Any successful model of electroweak symmetry breaking mivstmasses to the matter fermions
as well as the weak gauge bosons. This could be achieved eiiireg a single boson, as in the SM, or
two of them, as in the Minimal Supersymmetric extension ef$tiandard Model (MSSM) or by some
composite of new fermions with new strong interactions feaierate a non-zero v.e.v. as in (extendec
technicolour models, or by some Higgsless mechanism.

We do know, however, that the energy scale at which EWSB nmagtrdsO(1) TeV [45]. This
scale is set by the decay constant of the three Goldstonebdisat, through the Higgs mechanism, are
transformed into the longitudinal components of the wealggebosons:

—1/2
F, = (GF\/§) ”? ~ 246 GeV. (96)

If there is any new physics associated to the breaking ofreleeak symmetry, it must occur near this
energy scale. Another way to see how this energy scale emer¢e consides-wave W W scattering.
In the absence of a direct-channel Higgs pole, this amm@ituoluld violate the unitarity limit at an energy
scale~ 1 TeV (82).

It is the scale of 1 TeV, and the typical values of QCD and eteatak cross sections at this
energy,c ~ 1 nb-1 fb, that set the energy and luminosity requirements of th€Lt{s = 14 TeV and
L = 103 cm~2 s~! for pp collisions [13]. This energy scale is to be contrasted with énergy scale
of the other unexplained broken symmetry in the SM, namelyotla symmetry, which is completely
unknown: it may lie anywhere from 1 TeV up to the Planck scadg, = 1.22 x 10'? GeV.

There are some general constraints that any proposed mbdigctroweak symmetry breaking
must satisfy [46]. First, the model must predict a value &f gfparameter, Eq. (73), that agrees with
the valuep =~ 1 found experimentally. The desired valpe= 1 is found automatically in models that
contain only Higgs doublets and singlets, but would be walan models with scalar fields in larger
SU(2) representations. A second constraint comes from the stpiger limits on flavour-changing
neutral currents (FCNCs). These are absent at tree levakiminimal Higgs model, a fact that is in
general not true in non-minimal models.

2.2 Interpretation of the precision electroweak data

It is notorious that the two most precise measurements & ttpeak, namely the asymmetries measure
with leptons (particularlyd,(SL D)) and hadrons (particularbﬁ%%), do not agree very well [47], as seen
in Table 2 and Fig. 1.8. Within the SM, they favour different values ofz, around 40 and 500 GeV,
respectively, as seen in Fig. 10. Most people think thatdigsrepancy is just a statistical fluctuation,
since the total? of the global electroweak fit is acceptable? (= 17.3 for 13 d.o.f., corresponding to
a probability of 18% [16]), but it may also reflect the existerof an underestimated systematic errol
However, if there were a big error in%.5, the preferred value ofi;; would be pulled uncomfortably
low by the other data, whereas if there was a big error in ttegpnetation of the leptonic datay would

be pulled towards much higher values. On the other hand, ifake both pieces of data at face value
perhaps the discrepancy is evidence for new physics atéat@lveak scale. In this case there would b
no firm basis for the prediction of a light Higgs boson, whistbased on a Standard Model fit, and no fi
value ofm g could be trusted?

"We leave the treatment of the Higgs sector within the MSSMaftater section.
8Another anomaly is exhibited by the NuTeV data on deep-sigla — IV scattering [48], but this is easier to explain away
as due to our lack of understanding of hadronic effects.
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Fig. 10: The 68% confidence level ranges far; that are indicated by various individual electroweak measu
ments [16]

2.3 Higher-dimensional operators within the SM

The Standard Model should be regarded simply as an effdotivenergy theory, to be embeded within
some more complete and satisfactory theory. Thereforesbaeld anticipate that the renormalizable
dimension-four interactions of the SM could be suppleneitg higher-dimensional operators of the

general form:
c:
L odtp

Legr = Loy + X
where A; is a scale at which the supplementary interac@ﬁp of dimension4 + p appears to be
generated. A global fit to the precision electroweak datgesig that, if the Higgs is indeed light, the
coefficients of these additional interactions are small:

A; > O(10) TeV (98)
for ¢; = £1. Itis then a problem to understand the ‘little hierarchytvibeen the electroweak scale and
A;.

However, conspiracies are in principle possible, whichid@llow my to be large, even if one
takes the precision electroweak data at face value [49]mpies are shown in Fig. 11, where one see
corridors of allowed parameter space extending up to a hdayys mass, if\; < 10 TeV. A theory that
predicts a heavy Higgs boson but remains consistent witprbesion electroweak data should predic
a correlation of the type seen in Fig. 11. At the moment, thiy seem unnatural to us, but Nature may
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Fig. 11: The 68%, 90%, 99% and 99.9% confidence levels fit for globateleeak fits including two different
types of higher-dimensional operators, demosntratingkteg might conspire with a relatively heavy Higgs bosor
to yield and acceptable fit [49]

know better. In any case, any theory beyond the SM must liskvéiiue ofm g and the scales of these
higher-dimensional effective operators in some way.

2.4 Little Higgs

One way to address the ‘little hierarchy problem’ and exptaie lightness of the Higgs boson (if it is
light) is by treating it as a pseudo-Goldstone boson cooeding to a spontaneously broken approxi-
mate global symmetry of a new strongly-interacting sect@oae higher mass scale, the ‘little Higgs'’
scenario [50]. Such a theory would work by analogy with thenpiin QCD, which have masses far
below the generic mass scale of the strong interactionsGeV.

If the Higgs is a pseudo-Goldstone boson, its mass is pesteftom acquiring quadratically-
divergent loop corrections [51]. This occurs as a resulhefgarticular manner in which the gauge anc
Yukawa couplings break the global symmetries: more thancon@lng must be turned on at a time in
order for the symmetry to be broken, a feature known as ‘ctile symmetry breaking’ [52, 53]. As
a consequence, the quadratic divergences that would ngraggear in the SM are cancelled by new
particles, sometimes in unexpected ways. For exampleofivgdark loop contribution to the Higgs
mass-squared has the general form

A 2
2 2
OM 10 (SM) (115GeV) (7400 GeV) . (99)
As illustrated in Fig. 12, in little Higgs models this is cafied by the loop contribution due to a new
heavy top-like quarkl” with charge +2/3 that is a singlet ¢fU(2), leaving a residual logarithmic
divergence:

6Gpm? A
2 t, 2
5’rnH,top (LH) \/W mTlog mr . (100)

Analogously, the quadratic loop divergences associatdlul thwe gauge bosons and the Higgs boson ¢
the Standard Model are cancelled by loops of new gauge beaswhidiggs bosons in little Higgs models.

The net result is a spectrum containing a relatively lighgdsi boson and other new particles tha
may be somewhat heavier:

__mH
200 GeV

mpy

My < 2T _MH
T < eV( 200 GeV

)2 , My < 6 TeV ( )2 , Mpy+s < 10 TeV. (101)
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Fig. 12: Left: If the Standard Model Higgs boson weighs around 200,Ge&/top-quark loop contribution to its
physical mass (calculated here with a loop momentum cufdfoTeV) must cancel delicately against the tree-
level contribution. Right: In ‘little Higgs’ models, the pequark loop is cancelled by loops containing a heavie
charge-2/3 quark [50].

The extral” quark, in particular, should be accessible to the LHC. Initamid there should be more
new strongly-interacting physics at some energy scale above 10 TeV, to provide the ultra-violet
completion of the theory.

2.5 Technicolour

Little Higgs models are particular examples of compositggdimodels, of which the prototypes were
technicolour models [54, 55]. In these models, electrow®akmetry is broken dynamically, by the
introduction of a new non-Abelian gauge interaction [56+t58t becomes strong at the TeV scale. Thi
building blocks are massless fermions called technifensi@and new force-carrying fields called tech-
nigluons. As in the SM, the left-handed components of thertdéermions are assigned to electroweal
doublets, while the right-handed components form eleasnsinglets, and both components carry hy
percharge. A\gw ~ 1 TeV the technicolour coupling becomes strong, which leadbd formation of
condensates of technifermions with v.e.v.’s

(0) = (Frfr)=v. (102)

Because the left-handed technifermions carry electrowgeaktum numbers, but the right-handed one
do not, the formation of this technicondensate breaksrelsek symmetry.

The massless technifermions have the chiral symmetry group
GX:SU(QND)L®SU(2ND)RDSU(2)L®SU(2)R, (103)

whereNp is the number of technifermion doublets. When the conderfsains, this large global sym-
metry is broken down to
SX = SU(2ND) > SU(?)V , (104)

whereV refers to the vector combination of left and right currelaIIsd4N]23 — 1 massless Goldstone
bosons appear, with decay const&H. Similarly to the Higgs mechanism in the SM, three of thes
bosons are ‘eaten’ and become the longitudinal compondriteed?’* and Z° weak bosons, which
acquire masses [45]

1 m
W:%\/NDF;—C ; mZ:§\/g2+gl2\/NDF7IC:COS(E/W) . (105)
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The scaleAr¢ at which technicolour interactions become strong is rdlatethe magnitude of elec-
troweak symmetry breaking, namely to the weak scale, by:

Arc =fewx FI€ FT¢ = F /\/Np , (106)

where F, = v ~ 246 GeV. The breaking of the chiral symmetry in technicolour @mimiscent of
chiral symmetry in QCD, which provides a working precedemtthe modeP. Technicolour guarantees
p=mi,/ (m%cos (Bw)) = 1+ O () through a custodiadU (2) s flavour symmetry irG, [45], which
is traceable to the quantum numbers assigned to the teohiofes.

Dynamical symmetry breaking addresses the problem of gtiadlivergences in the Higgs mass-
squared, such as (99), by introducing a composite Higgsrbtsat ‘dissolves’ at the scal&tc. In
this way, it makes loop corrections to the electroweak stelturally’ small. Moreover, technicolour
has a plausible mechanism for stabilizing the weak scalbdbow the Planck scale. The idea is thai
technicolour, being an asymptotically-free theory, cesplveakly at very high energies 10'6 GeV,
and then evolves to become strong at lower energidsTeV [54]. However, writing down an explicit
GUT scenario based on this scenario has proved elusive.

As described above, the simplest technicolour models quadide masses for the gauge boson:
W* and Z°, but not to the matter fermions. Additions to technicoloould allow for quark and
lepton masses by introducing new interaction with techinifens, as in ‘extended technicolour’ mod-
els [55, 60]. However, these had severe problems with flagbanging neutral interactions [61] and a
proliferation of relatively light pseudo-Goldstone bosdhat have not been seen by experiment [62].

Moreover, a generic problem with technicolour models isereéed by the global electroweak fit
discussed in the first Lecture. The preference within the 8iafrelatively light Higgs boson (81) may
be translated into constraints on the possible vacuum ipatamn effects due to generic new physics
models. QCD-like technicolour models have many strongtgriacting dynamical scalar resonances il
the TeV range, e.g., a scalar analogous tostieeson of QCD that corresponds naively to a relativel
heavy Higgs boson, which is disfavoured by the data [63]. hSaienodel can be reconciled with the
electroweak data only if some other effect is postulatedatacel the effects of its large mass. One
strategy for evading this problem is offered by ‘walkingteicolour’ theories [64], where the coupling
strength evolves slowly, i.e., walks. However, the losshef tlose analogy with QCD makes it more
difficult to calculate so reliably in such models: latticeltaiques may come to the rescue here.

2.6 Interpolating models

So far, we have examined two extreme scenarios: the orthiodespretation of the SM in which the
Higgs is elementary and relatively light, and hence intisranly weakly, and strongly-coupled models
exemplified by technicolour. The weakly-coupled scenaraublg require additional TeV-scale parti-
cles to stabilize the Higgs mass by cancelling out the quiaddévergences such as (99). A prototype
for such models is provided by supersymmetry, as discusséukei next Lecture. On the other hand,
strongly-coupled models such as technicolour introduceymesonances that are required by unitarity
and generate important contributions to the oblique ragiatorrections, e.g., a vector resonanci
W*W~ scattering would induce

5p ~ W (107)

wherep was defined in (73), and the experimental upper liplit< 10~ at the 95% confidence level
imposesn, > 2.5 TeV.

One way to interpolate between these two extreme scenamosprovide a basis for determin-
ing how far from the light-SM-Higgs scenario the data pemsitto go, is to consider models in which

®The condensation phenomenon also occurs in solid-statsigshydynamical symmetry breaking in superconductors i:
achieved by the formation of Cooper pairs [59], which aredemsates of electron pairs with chargge.
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the unitarization of théV *1W — scattering amplitude is shared between a light Higgs bostmmod-
ified couplings and a vector resonance with magsand couplingg,, whose relative importance is
parametrized by the combination

¢ = o2 (108)
mp
The SM is recovered in the limg — 0, but its decay branching ratios may differ considerably as
increases towards the strong-coupling lighit= 1, as seen in Fig. 13. Thus, one signature for suc
models at the LHC may be the observation of a Higgs boson witiplings that differ from those of the
SM.
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Fig. 13: The dependences of Higgs branching ratios on the parathéi€8), formy = 120 GeV (left) and
180 GeV (right) [65]

Another way to probe such models is to look for effectdlif” W, scattering. Unfortunately,
at the LHC thel?V’* bosons that are flashed off from incoming energetic quagkss W¢' have pre-
dominantly transverse polarizations, so th&tV;/ W, — Wi W) > o(W; W, — W LW;) and
oc(WFW — wiw/) for all my,+y+ in the SM, and there is an accidental very small factor [65]:

dJLL/dt _ 1 mw+w+ 452’ (109)
doTT/dt — 2304 \ mw

which implies that, even fo¢ = 1, o(W; W} — W/ W}) > c(WAWS — WSWS) only for
my+w+ > 1.2 TeV, which is unlikely to be accessible at the LHC, as seenign ®4. An alternative
possibility for the LHC may be double-Higgs producticia the reactionV *W~ — H H, which may
be greatly enhanced as compared with its rate in the SM, aseds in Fig. 14 —though its observability
may be a different matter.

2.7 Higgsless models and extra dimensions

As has already been discussed, if there is nothing like a SMs$tosong-waveW W scattering reaches
the unitarity limit atmy+y- ~ 1 TeV (83). An immediate reaction might be: Who cares? Some no
perturbative strong dynamics will necessarily restordauity, even in the absence of a Higgs boson
However, more detailed study in specific models has showntlii& strong dynamics is apparently
incompatible with the precision data: one needs some fative mechanism to break the electroweal
symmetry.

How can one break a gauge symmetry? Breaking it explicitiyldrdestroy the renormalizability
(calculability) of the gauge theory, whereas breaking gharaetry spontaneously by the v.e.v. of some
field everywhere in space does retain the renormalizakfitigyculability) of the gauge symmetry. But
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Fig. 14: Left; the cross sections(WiW} — WiWlh), o(WW;i — WLILWSE), ande(W, W, —
WL*WJ), as functions of (108). Right: cross sections for double Higgs productidsi.[6

that is the Higgs approach that we are trying to escape: I= theother way? The alternative is to
break the electroweak symmetnia boundary conditions. This is impossible in conventioBaf 1-
dimensional space-time, because it has no boundaries. \leowebecomes an option if we postulate
finite-size (small) extra space dimensions [66—68].

To see how this works, let us first consider the particle specin the simplest possible model
with one extra dimension compactified on a cirleof radius R with internal coordinate (fifth dimen-
sion)y, as illustrated in Fig. 15. In this case, the wave functioma bbsony aty andy + 27 R must be
identified:

Py +2mR) = ¢(y) , (110)
so that one can expand the five-dimensional field as follows:
_ 1 Y\ o+ (TN o
b(a,y) = Z m(eos( ) 6t (@) +sin () 6 (). (111)

The ¢ are the four-dimensional Kaluza—Klein [69, 70] modes offtatel, which appear in four dimen-

sions as particles with masses
n

and the functionsos, sin(ny/R) describe the localizations of these modes along the extnardiion.
the lowest-lying mode has a flat wave function=€ 0), and the excitations have> 0.

We now consider what happens if we ‘fold’ the circle by id&ntig y ~ —y. Mathematically,
this is the simplesprbifold S!/Z,, also illustrated in Fig. 15. At the same time as identifying: —,
we can also identify the fielg up to a sign:

o(—y) = Us(y) : U* = 1. (113)

This has the effect of projecting out half the Kaluza—Kleiaw functions (111). If we choodé = +1,
we select the even wave functionss(ny/R) and hence the Kaluza—Klein mode3 (z) whereas, if
we choosd/ = —1, we select the odd wave functiorss:(ny/R) and hence the Kaluza—Klein modes
¢, (x). The ‘even’ particles include the massless mode with: 0 whereas all the ‘odd’ particles are
massive. The projectioli serves to give masses to all the states that are asymmetric.

This mechanism can be extended to break gauge symmetry §66+t&t us consider a five-
dimensional theory with a gauge fielt, 5, and let us identify it on the orbifolg ~ —y up to a discrete
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Fig. 15: Compactification on a circl§® of radiusR with internal coordinate (fifth dimensiom) illustrating the
possible orbifolding of this modefa the identificationS* /7,

gauge transformatiot’ : U? = 1:

A, = FUAUT, (114)
As = —UAs(y)U'. (115)

The gauge symmetry group is broken at the end-points of thiéotd y = 0, 7 R: the surviving subgroup
is the one that commutes willi, and asymmetric particles acquire masses as describeé.abothis
way, one could imagine breakir§{/(2) @ U(1) — U(1) with a suitable orbifold construction.

It is a general feature of this construction that a vectosmaace should appear W Z scattering,
corresponding to the lowest-lying Kaluza—Klein excitatid he production of such a particle at the LHC
has been considered in the context of a Higgsless model,cand well be observable, as seen in Fig. 16
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Fig. 16: Left: calculations of the possible modifications of W+ 2% — W+Z°). Right: simulations of the
possible numbers of events at the LHC [65].

You might wonder whether this type of vector resonance baaysrelation to the vector reso-
nances discussed previously in the context of new stron@rdigs. The answer is yes: as was firs
emphasized in the context of string theory, a strong cogpkinequivalent to a new compactified di-
mension, and there is in general a ‘holographic’ relatiotwken four- and five-dimensional theories,
the former being considered as boundaries of the five-diloeals'bulk’ theory. These ideas enable
the strongly-interacting models of electroweak symmetgaking discussed in this Lecture, and man
others, to be related through a unified description a la M#h§7 1], as seen in Fig. 17 [72]. The alter-
native is a weakly-interacting model of electroweak symmnbteaking, which is favoured, naively, by
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the indications from precision electroweak data of a ligidgs boson. In the next Lecture we discuss
supersymmetry, which is the most developed such altemativ

Randall-Sundrum |

Holographic PNGB Higgs \\ Higgsless

l': ]
1 |

Little Higgs - __\ Technicolor

Fig. 17: Relations between different models of electroweak symyrwaking [72]

3 Supersymmetry

We have seen that the Standard Model is a valid descriptiphysfical phenomena at energies lower tha
a few hundreds of GeV. However, there are various reasonsrb that supersymmetry might appear
at the TeV scale, and hence play an important role in new ds@s at the LHC, which will explore
energies of the order of a TeV. In this Lecture we present asclids supersymmetric models, with a
focus on the phenomenological consequences of supersyymmet

We first give a brief historical introduction and summarilze totivations for supersymmetry in
particle physics. Subsequently we discuss the generalalostructure of a physical supersymmetric
theory. We then continue with some theoretical notions guudi@ations to ‘low-energy’ particle physics
around the TeV scale. Among the possible models, we focue@Minimal Supersymmetric Standard
Model (MSSM), which provides a basis for analysing supersgtnic phenomenology. Within the con-
text of the MSSM, we discuss the principal experimental tairg#s on supersymmetry, and then discus
possible aspects of the detection of supersymmetry.

3.1 History and motivations
3.1.1 What is supersymmetry?
Supersymmetry is a radically new type of symmetry that fianss a bosonic state into a fermionic state
or vice versa, WithtAS = +1/2, whereS is the spin. Denoting the supersymmetry generato§@bye
may write schematically:
Q|Boson) = |Fermion) (116)

Q|Fermion) = |Boson). (117)
Formally, supersymmetry is an extension of the space-tiynarsetry reflected in the Poincaré group,
and this was a principal motivation leading to its discovdnjtially, it was also hoped that one could

use supersymmetry to combine the external space-time symeseith internal symmetries. However,
this prospect seems more distant, as discussed below.

3.1.2 Milestones

There were several attempts in the 1960s to combine intamalexternal symmetries, but Colemar
and Mandula [73] showed in 1967 that it is impossible to coralithese types of symmetnwjia a fa-
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mous no-go theorem that is discussed later in more detaiveder, their proof assumed that the new
symmetry should be generated by bosonic charges of intpgeria 1971, Golfand and Likhtman [74]

discovered an extension of the Poincaré group using feimararges of half-integer spin. In the same
year, Ramond [75], Neveu and Schwarz [76] proposed supengyrit models in two dimensions, with

the aim of obtaining strings with fermionic states that doatcommodate baryons. A few years later
in 1973, Volkov and Akulov [77] tried to apply a nonlinear ligation of supersymmetry to neutrinos in
four dimensions, but their theory did not describe coryettte low-energy interactions of neutrinos.

In the same year, Wess and Zumino [78, 79] proposed the fuistdionensional supersymmetric
field theories of interest from the phenomenological pointiew. Specifically, they showed how to
construct supersymmetric field theories linking scalats farmions of spini /2 [78], and also fermions
of spin 1/2 with gauge particles of spin 1 [79]. Then, together withpbalos and Ferrara, Zumino
discovered that supersymmetry would eliminate many of tliergences present in other field theo-
ries [80, 81]. At first, these ultraviolet properties wergamled as curiosities, in particular becaus:
not all logarithmic divergences were eliminated, but atissTwere made to construct phenomenologi
cal supersymmetric models, for example theories unifyiraiten particles and Higgs fields in the same
supermultiplet. Subsequently, in 1976, two groups [82,f88hd a local version of supersymmetry in
which the supersymmetry transformation depends on theegjrae coordinates. This theory necessarily
includes a description of gravitation, and hence has bellgdcupergravity.

3.1.3 Why supersymmetry?

Following these formal developments, the phenomenologgupkersymmetry has been studied inten
sively, and models based on supersymmetry are considetmlamong the most serious candidates fc
physics beyond the SM [84—-86]. Why introduce supersymmietparticle physics? What makes it so
attractive for particle physicists?

The reasons for its introduction in particle physics ar@@pally physical, and quite diverse in
nature, as we now discuss.

e The very special properties of supersymmetric field theagsie helpful in addressing the natu-
ralness of a (relatively) light Higgs boson. In the previduestures we have discussed the existence «
enormous radiative corrections to the Higgs mass-squargdwhich feels the virtual effects of any par-
ticle that couples directly or indirectly to the Higgs fielebr example, the correction due to a fermionic
loop such as that in Fig. 18(a) yield%

2
Y
Am? = —8%[2/\2 + 6m? In(A/mg) + ..., (118)

whereA is an ultraviolet cutoff used to represent the scale up telwtie SM remains valid, at which
new physics appears. We see that the mass of the Higgs divgugedratically with\ and, if we suppose
that the SM remains valid up to the Planck scalg, ~ 10" GeV, thenA = Mp and this correction
is 1030 times bigger than the reasonable value of the mass-squéitkd Bliggs, namely(10%) GeV)!

Moreover, there is a similar correction coming from a loogafcalar fieldS, such as that in Fig. 18(b):

As

W[AQ —2m%In(A/mg) + ..., (119)

2 _
AmH—

whereAg is the quartic coupling to the Higgs boson.

Comparing (118) and (119), we see that the divergent caiis termsx A? are cancelled if,
for every fermionic loop of the theory there is also a scataplwith A\g = 2y}%. We will see later that
supersymmetry imposes exactly this relationsHipus supersymmetric field theories have no quadrat
divergences, at both the one- and multi-loop levels, whithbées a large hierarchy between differen

OFor this calculation, we define the Yukawa coupling of theddioson to a fermion, as usueie: y Hyp.
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Fig. 18: One-loop quantum corrections to the mass-squared of thgsHigson due to (a) a fermionic loop, (b) a
scalar boson loop

physical mass scales to be maintained in a natural way. liti@ddother logarithmic corrections to
couplings also vanish in a supersymmetric theory [87].

e A second circumstantial hint in favour of supersymmetrnhis fact, discussed in the previous
Lecture, that precision electroweak data prefer a religtivght Higgs boson weighing less than about
150 GeV [16]. This is perfectly consistent with calculasdn the minimal supersymmetric extension ol
the Standard Model (MSSM), in which the lightest Higgs bos@ighs less than about 130 GeV [88].

¢ A third motivation for supersymmetry is provided by the apftrysical necessity of cold dark
matter, which has a density 6fcpy/h? = 0.1099 + 0.0062 according to the recent measurements ¢
WMAP [33]. This dark matter could be provided by a neutralallg-interacting particle weighing less
than about 1 TeV, such as the lightest supersymmetric a(tiSP)y [34]. In many supersymmetric
models, a conserved quantum number calgplrity guarantees that the LSP is stable. As the Univer:
expanded and cooled, all the particles present at high ieseagnd densities would have annihilated
disintegrated, or combined to form baryons, atoms, etcepixfor stable weakly-interacting particles
such as the neutrinos and the LSP. The latter would be preséme Universe as a relic from the Big
Bang, and could have the right density to constitute the nitgjof the cold dark matter favoured by
cosmologists.

e Fourthly, let us consider the couplings that characteraeheof the fundamental forces. As
seen in the left panel of Fig. 19, it has been known for a longetnow that if we evolve them with
energy according to the renormalization-group equatidriseoStandard Model, we find that they never
quite become equal at the same scale. However, as seen ighheanel of Fig. 19, when we include
supersymmetric particles in the evolution of the coupljrthey appear to intersect at exactly the sam
energy scale (abo@ x 10'® GeV) [89]. Nobody is forced to believe in such a ‘Grand Unifica’ on
the basis of this possible unification of the couplings, bistvery intriguing that supersymmetry favours
unification with high precision.

o Fifthly, supersymmetry seems to be essential for the ctamsiyg of string theory [90], although
this argument does not really restrict the mass scale atwvghipersymmetric particles should appear.

¢ A final hint for supersymmetry may be provided by the anomslmagnetic moment of the
muon, g, — 2, whose experimental value [91] seems to differ from thatwlated in the SM, in a manner
that could be explained by contributions from supersymimetarticles. The amount of this discrepancy
depends on how one calculates the SM contributiong,te- 2, in particular that due to low-energy
hadronic vacuum polarization, and to a lesser extent thatallight-by-light scattering. The most direct
way to calculate the hadronic vacuum polarization contidiuis to use low-energy data erfe~ —
hadrons: these do not agree perfectly, but may be combingdltba discrepancy [92]

Say, = 0 <9“2_ 2) = (24.6 +£8.0) x 10719, (120)

a discrepancy of 3., as illustrated in Fig. 20. Alternatively, and less dirgctihe may use decay
data, in which case the discrepancy is reduced to abeut 2
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Fig. 19: The measurements of the gauge coupling strengths at LER (@tcevolve to a unified value if there is
no supersymmetry but do (b) if supersymmetry is included [89
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Fig. 20: SM calculations ofz, = (g,, — 2)/2 disagree with the experimental measurement [91], pastitulf
they are based on low-energye~ data [73].

As we have seen, there are several arguments that motieattutly of supersymmetrdt. Al-
though there are no experimental proofs of its existenggersymmetry combines so many attractive
and useful characteristics that it deserves to be studiddtal.

3.2 The structure of a supersymmetric theory
3.2.1 Interlude on ‘spinorology’

In order to lay the basis for the theoretical descriptionugfessymmetry [84], we first present the nota-
tions and conventions that we use in the rest of the sectibr8[.

1other extensions of the SM also address some of these issaegh perhaps none do so as naturally as supersymmetry

177



M. BUSTAMANTE, L. CIERI AND J. ELLIS

¢ We choose th&Veyl representatiofor the v matrices:

,yu_< 0 00”) (121)

ok

with o# = (15,0%), * = (12,—0') whereo; are the Pauli matrices, angy = i7'y'y2+3 =
diag(—12,12). We also usg~*,~v"} = 27,,, wheren,,, = diag(+1,-1,—1,—1) is the Minkowski
metric, that may be used to lower or to raise Lorentz indexes.

e A Weyl spinordescribes a particle of spity2 and given chirality. It has two components, which we
label with Greek letters),, {3, ... wheren, 3,... = 1,2. A spinor, or v, will denote a particle with

left chirality, whereas we denote hy" or ¢z a spinor with right chirality. These are related by comple:
conjugation:
(Ya)* =04 (122)
@) =y . (123)

We also use the matrix,g = o = iocy ande®? = £ = —1i09, Which allows us to raise and lower the
spinorial indicesy andg.

¢ A Dirac spinoris constructed out of two Weyl spinors, and describes agbanith both chiralities. It
is a spinor of four components, which we denote here usintgat&preek letters¥, y, ®, ... In terms of

Weyl spinors, we have
_ wL _ ¢q
‘11_<1Z)R>_<ﬁ“)' (124

The projection operator®r ;, = %(1 + v5) allow us to select the right or left chiralty, respectively:
\IJR,L = PR,L‘IJ-

¢ A charge conjugate spinds a spinor to which charge conjugation has been appliededtribes the
antiparticle of a given particle, with opposite internapopite charge.

U =0 = < Tl ) , (125)
(0

where the charge conjugation mat€ixcan be written:
C = in"2. (126)

e A Majorana spinoris constructed out of a single Weyl spinor, but possessescfimponents that are
interrelated by charge conjugation, so thay = ¥¢,:

_ VL _ | Ya
= ( —ioa (L))" ) a < " ) ' i

3.2.2 The supersymmetry algebra and supermultiplets

As was described before, supersymmetry combines the sipaedransformations of the Poincaré group
with transformations of an internal symmetry. Prior to tHeent of supersymmetry, there had been man
previous attempts to combine internal and external symesetbut they had always failed, for a reasor
demonstrated by Coleman and Mandula [73]. All the previdtesvgpts used bosonic charges, scalar (c
vector) such as the electromagnetic charge (or momentunatopge

(SpinJ|Q|SpinJ) = g, (128)
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(SpinJ|P,|SpinJ) = p,. (129)
Conservation of momentum in ay— 2 collision implies

p + o = )+l (130)

Consider now a tensor chargg,,: by Lorentz invariance, its diagonal matrix elements in payticle
state|a) must be of the form

<CL|EMV‘CL> = QGuv "‘Bpupu' (131)
Conservation of the tensor charge during & 2 collision would require

P + p@pD = pEpl) + pHplh. (132)

This is compatible with the linear relation (130) of cooventl momentum conservation iff

(1)

p = p® or p, (133)

implying that only exactly forward and backward scatteramng allowed: no need to place any detector
at large angles! This proof can easily be extended to bosdmcges with any number of indices.
However, it makes the crucial assumption that the diagoratimelement(a|Q|a) # 0, which is not
true in supersymmetry, enabling it to evade the Coleman-eélamo-go theorem.

Supersymmetry is generated $pinorial charges), which have vanishing diagonal matrix ele-
ments:(a|Q.|a) = 0. Being spinors, thé),, anti-commute in the same way as other fermionic fields.
is possible to introduce more generators, but in the simhpksion of supersymmetry there is just a pail
of generators(),, andQ<, that are complex spinors transforming inequivalentlyarritie Lorentz group.
This isN' = 1 supersymmetry, which is essentially the only case that wsider in these notes. The
initial reason for this choice is pedagogical, but in thédwing section we give some physical reason:
for such a choice.

The algebra of the supersymmetry (like that of any other sgtryhis summarized in the com-
mutation (and anticommutation) relations of its genemtae., its Lie (super)algebra. In addition to
the commutation relations of the Poincaré algebra, thersypemetry algebra includes the following
relations for the generator3, y Q%:

[P*,Qs]  =0=[P",Q%, (134)
{Qa, Qg =2(0p),5P", (135)
(QaQs} =1{Q% Q%) =0, (136)
{Muqua} :%(Uuu)cﬁy@ﬁa (137)
(M, Qa) = 5305 (138)

What is the significance @), ? First,Q is a charge in the sense of Noether’s theorem, i.e, it is taepeh
conserved by the symmetry. As a conserved charge, it consritie the Hamiltonian of the system and
is invariant under translations, see (134). Since it pagsespin 1/2 and has two complex component:
it can be written as a Weyl spinor, or alternatively as a Majer spinor with 4 components: as such, it
commutation relations with the Lorentz generators are detaly determined, see (137) and (138). The
non-trivial anticommutation relation above is (135): stiagically {Q, Q} ~ P, which means tha is
the ‘square root’ of a space-time translation.

If we want to apply supersymmetry to particle physics, we inkmew how to arrange particles
in irreducible representations (supermultiplets), armrttransformation properties. Therefore, we now
study the supermultiplets and detail their contents. Walkéleat the Poincaré group has two Casimit
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invariant elements, the spin invariaif? = WHW,,, whereW# = %EWP"PVMW is the Pauli-Lubanski
vector, and the mass invariaf? = PrP,, where P* is the four-momentum. In a multiplet of the
Poincaré group, the particles have the same masses anditeespmns. However, in the case of super.
symmetry,lW2 is not an invariant of the algebra, so only mass is consenatdspin:

[P27 Qa] =0, (139)
W2Qa] #0. (140)

Thus, in a supermultiplet, the particles have the same matsdifferent spins. We can nevertheless
modify W to obtain a new invariant whose eigenvalues are of the iy + 1)m?* with j = 0, %, 1,...
the quantum number of this ‘superspin’. This modifi&dis an invariant, so every irreductible represen
tation can be characterized by a pit, j], and the relation between the sginand; is deduced from
the relation:Mg = M;, M; + %, M; — 3, M;. Within a given supermultiplet, there are particles of the
same mass and the same superspin. In addition, an importgrarfy of any supermultiplet is that there
are equal numbers of bosonic and fermionic degrees of freeda = np.

We can construct now two different supermultiplets:

> The fundamental representatipn, 0] is called a chiral supermultiplet. The valge= 0 implies
Mg = 07+%, —%70, and this supermultiple® contains two real scalar fields described by a singl
complex scalar field (the sfermiony), and a two-component Weyl fermionic field of spin 1/2with the
same mass:

U = (¢, ¢, F). (141)

What is F'? In order that the supersymmetry be preserved in loops,entherparticles are not on-shell,
i.e., P2 # M?, it is necessary that the fermionic and bosonic degreeseetibm be balanced also
off-shell This is an issue because an off-shell Weyl fermion posse$spin degrees of freedom, as
opposed to 2 on-shell. It is necessary to add to the on-stiefent of this representation another scala
complex fieldF' that does not propagate, and does not correspond to a phyaitale. This is termed
an auxiliary field, and does not have a kinetic term, and the#on of motionF' = F* = 0 may be
used to eliminate it when on-shell.

> The second representation we use later is the vector (oeyaugermultiplefm, 1/2], denoted
by ®. Its field content is obtained in the same way: a Weyl fermion équivalently, a Majorana
fermion), called the gaugina®, a gauge boson (of zero mas4j, and in the presence of any chiral
supermultiplet, an auxiliar real scalar field?:

® = (A%, A%, D%, (142)

whereq is an index of the gauge group.

These two representations may be used to accommodate tiweganf the SM and their super-
partners. However, before doing so, we first construct wigsé two representations generic supersyn
metric field theories.

3.3 Supersymmetric field theories

Before discussing supersymmetric models in general, artccplarly the minimal supersymmetric ex-

tension of the SM (the MSSM), we first present, without dethiflerivations, the general structure of &
field theory with supersymmetry. We first introduce the mawfélVess and Zumino [78] without inter-

actions to see how the fields transform. Then we introduceéntieeactions, which will lead us to the

new notion of the superpotential. Finally, we discuss gdiglgs in a supersymmetric theory. At the end
of this section, we will have accumulated enough theoreliaggage to understand the structure of th
MSSM, and be able to study concretely its experimental ptigahis.
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3.3.1 The action for free bosons and fermions is globally sgymmetric

The simplest supersymmetric action is the combination tiéas for a non-interacting massless comple;
scalargand a spint/2 fermion:

S = /d4x ([’scalar + [’fe’r‘mion) : (143)
[’scalar = _8“¢ 8,u¢* ) (144)
[’fe’r‘mion = _i¢T6M 5;@ (145)

If we introduce an infinitesimal supersymmetric global sfanmation parametet,, which is a Weyl
fermion independent of the space-time coordinatés{ = 0), and apply it to the scalar field, the
result must be proportional to the fermionic field

8¢ = €Yy and 56 = &4 Y9, (146)
leading to B
5£scala7’ = —* (5“1%) 8u¢* - aMQb €Eo (@ﬂba)' (147)
Since the mass dimensions of free boson and fermion fields are
3
[el=1, [ =3, (148)

] = —= (149)

in contrast to an usual Weyl fermion that has dimen$i®nss)3/2 (148). By simple dimensional count-
ing, the infinitesimal transformation of the fermion field shtherefore be proportional to the derivative
of the boson field:

5o = i(0"€M) o By and 59 = —i(eat)* 90" (150)

Combining (146) and (150) and using the equations of moti@see that the suf s.qiq, + L fermion
is a total divergence. This implies that the combined actidmch is the space-time integral of the two
free Lagrangiang.scqiar + L fermion, 1S invariant under this pair of transformations.

Does this transformation correspond to a supersymmetngftsanation? To convince ourselves
that this is the case, it is enough to start from a fermiaor from a bosorp, and to apply these transfor-
mations twice. We find the following chain:

o — Y — 0p, Y — 0P — O, (151)

which means that in both cases the combined effects of twoessive supersymmetry transformations
are equivalent to a space-time derivati¥é and hence to the momentum operattt ~ i0*. Thus
we recover the result of the previous section, nan@¥y ~ P, and our transformations satisfy the
supersymmetric algebra. This free Lagrangian model isadlgtthe simplest Wess—Zumino model with
a single chiral supermultiplet, without mass and withotgifiactions.

If we wish to preserve supersymmeuwff-shell which will be essential once we include interac-
tions, we cannot use the equations of motion to demonstugiersymmetry. To overcome this problem,
as discussed earlier, the actiSrmust be modified by the addition of a term that contains anliavyxi
field F:

S = f d4£L‘ (‘Cscalar + ‘Cfermion + Eaua))a (152)
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In the on-shellcase, the equation of motion fét would yield FF = F* = 0. However, its introduction
modifies the supersymmetry transformations of the figldmd¢ off-shell Specifically, the transforma-
tion of the fieldy is affected by the scalar fielH. To see this, we first observe that the dimension of th
field F is of (mass)?, so that its only possible transformation law is

SF =i ("2 0,05 and 6F* = —i 9,1° (") €a - (154)

The variation of the ternt ... in .S therefore gives
0Loguz = 1€(T") Optp F* — z'a,ﬂfz (c") e F. (155)

In the on-shellcase, as we have already seen, the equation of motiof feould yield FF = F* = 0,
and the variation (154) would also vanish, thanks to the gmuaf motion fori. To compensate the
variation (155) in theoff-shellcase, we see that we require a supplementary term in thddraragion
law for 4):

5o = 1(01€) 0 Dpd + o F et 69 = —i(e o)V 0, 0" + EXF*. (156)

Once again, the supplementary term vanishes when the dreshdition F' = 0 is applied. For simple
dimensional reasons, the transformationg @fre not affected. It is easy to check tla&t = 0 without
using the equations of motion, and hence supersymmetrincastto be satisfied off-shell, thanks to the
appearance of the auxiliary field.

In fact, the auxiliary field plays an additional role. We maet forget that we have not observed
supersymmetry in the range of energies explored so far. ¢jéihgupersymmetry exists at all in Nature,
it must be broken in some way. The auxiliary fidldland the other auxiliary field that we meet later)
serve to break supersymmetry if their v.e.v.s are non-zexaye will see in the last part of this section.

3.3.2 Interactions of the chiral multiplets

We now add to the theory interactions between the scalaremudn fields that comprise chiral super-
multiplets. The most general form of interaction that is astquadratic in the fermion fields is

1 ..
Lint = —§W”(¢, O )ik + V(g, ¢*) +c.c. (157)

We do not demonstrate it in detail, but the quanit§// must be an analytic function of the fields,
i.e., it does not depend on tlag, in order to ensure that the variation due to a supersymnti@mngfor-
mation of the first term ofL;,; can be compensated by the variation of another term (bhsloatause
supersymmetry transformsg; into ¢; andvice versj. For the same reasohl’” must be completely
symmetric. HencéV’ ¥/ must be of the form:

i _ 82W(¢)’
09; 00
where the objectV is called thesuperpotential In order for the model to be renormalizable, the term ii

(157) that is bilinear in the fermion fields can have at most a linear dependence on the scalar figlds
implying that¥” can be at most cubic:

(158)

1 . 1 ..
W = §m”¢i¢j + éy”k¢i¢j¢k (159)

in the context of a renormalizable theory. Remarkably, tafpam wave-function renormalization of the
fields, there is no intrinsic renormalization of the supéeptial parameters.

In general, the superpotential has dimensiomss)®. The quadratic term i/ (159) provides
the (symmetric) mass matrix* of the fermions, which is equal to the mass matrix of the sdadaons,
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by virtue of supersymmetry. The trilinear term Wi provides the matrix of Yukawa couplingg’*
betweeen a scalar and two fermions, and summarizes alltém@aations that are not gauge interactions
As already notedlV is an analytical function of the complex fields, which has an importance that we
discuss later.

The requirement that;,,; be invariant under supersymmetry transformations alserchénes the
form of the potentiall’. In presence of interactions, i.e., if the superpotensialan-zero, the auxiliary
fields F* introduced earlier (153) can be written in the form:

oW (¢) . OW(9) :
oo 50, (160
We may therefore write the Lagrangian without introducinglieitly the F fields, in which case the
potentialV" of the theory is:

V = WiW = F,F*. (161)

That is automatically non-negative, since it is a sum of nhaghsquared terms. If we use the genera
form (159) of the superpotential, we have the general Lagaan

* ot = 1i‘ 1*i' 1i‘ 1**1”
L =—0"¢0,¢"—il " Quv—om sy —omipT el =V — oy b —cyiewylt, (162)

whereV is given by (161), (160) and (159). It is easy to see from (168} the boson and fermion
masses are equal, as one would expect from supersymmetry.

3.3.3 Supersymmetric gauge theories

In addition to chiral fermions (quarks, leptons), the SMteams gauge fields of spin 1 andZ bosons,
photons and gluons). In the section dedicated to the supensyry algebra, we saw that vector super:
multiplets would provide the appropriate frameworks farlsgauge fields. We now study the properties
of such a supermultiplet, both with and without interac$i¢ri9]. We recall that a vector supermultiplet
contains a massless gauge bosthand a massless Weyl fermion, the gauging both in the adjoint
representation of the gauge group. In order to go off-shek must introduce an auxiliary real scalai
field D, analogous to the auxiliary fielf introduced for the chiral supermultiplet.

The form of the Lagrangian is completely determined by thed@mn of gauge invariance and of
renormalizability:

1 S\ aT = a 1 a a
Loauge = =7 F P — i TGH DA 4 5 DD, (163)
where the gauge covariant derivatiie, and F;, take the forms:
Fo, = 0,AL— 0,A5 — gf " Ab A, (164)
DyX* =9\ — gf* AL, (165)

as usual for a gauge theory. Remarkably, this Lagrangialneady supersymmetric, as can be checke
using the following supersymmetry transformations forfiells of the vector supermultiplet:

1

sAs = = (Ja“ AS L )\aT5u€> , (166)
a { —V a 1 a

oNE = —2\/5(0“0 e)aFw, + EGaD ) (167)

5D = % (1" DA = DuATate) (168)

In the absence of any interactions with chiral supermutilthe equation of motion for the auxiliary
field D% is simply D* = 0, as seen directly from the Lagrangian (163), since it do¢haee a kinetic
term and therefore does not propagate.
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However, in the SM the gauge fields do interact with the chiaiions. Hence, in our super-
symmetric version we have to consider interactions betwbéal supermultiplets and vector supermul-
tiplets. As in the SM, the usual derivativé®' of the fermions must be replaced by gauge-covariar
derivativesD*, and the same applies to their scalar supersymmetric parthbe supersymmetric trans-
formation laws of the chiral supermultiplets must be chanigetake into account the variations of these
new terms. As a result, the equation of motion fof becomes:

D = —g(¢"T"9), (169)

where thel® are the generators of the gauge group ansl its coupling constant, and the full scalar
potential is

*1 1 amna __ *Y1710 1 2/ ka1 \2
V =FF +§%:DD = WW +§Za:g(qﬁT¢). (170)

This potential is completely determined by the Yukawa cimgdl (via the F' term) and by the gauge
interactions ¥ia the D term). The full scalar potential is automatically non-n@gg which is important
for the spontaneous breaking of the symmetry.

In a globally supersymmetric theory, spontaneous breakiag occurvia a v.e.v. for theD term
or the F' term, either of which would give a positive contribution teetvacuum energy. However, it
is difficult to construct models that are interesting for pii@enology, and most model-builders pursut
the spontaneous breaking of local supersymmetry in theegbof a supergravity theory, in which this
positive contribution may be cancelled.

3.4 Low-energy supersymmetric models

In this section we apply the results obtained in the previeerion, with the objective of supersym-
metrizing the Standard Model while preserving its sucegsdiaracteristics. The minimal supersym-
metric extension of the SM is called the MSSM [85, 86]. We wikksent its particle content (including
the nomenclature of the new particles), we will discuss Hoevelectroweak symmetry may broken, anc
we will outline an effective framework for describing theebking of supersymmetry. Later we will
present typical predictions of the MSSM. Along the way, wé also mention possible variants of the
MSSM, because Nature might very well have chosen a path noonglex than this minimal model.

3.4.1 How many supersymmetries?

As well as mentioned already, the number of supersymmeénetors), may beN > 1. Super-
symmetric theories witth" > 2 have some characteristic advantages, e.g., they have déveegences,
which make them very interesting theoretically. Specifjcah the N/ = 2 case there is only a finite
number of divergent Feynman diagrams, and inthe= 4 case there are none, i.e., any theory witt
N = 4 supersymmetries is intrinsically finite, and it is easy tastouct finite\V = 2.

Unfortunately, it is not possible to construct realisticdats with ' > 2, because they do not
allow the violation of parity that is observed in the wealenaictions. This is because a supermultiple
of a theory with\ > 2 supersymmetries necessarily incorporates both left- gd-handed fermions
in the same supermultiplet: applying a supersymmetry @@rghanges the helicity by 1/2, so applying
two charges relates states with helicityl /2, implying that they are in the same representation of th
gauge group, and hence have the same interactions. Thisdiotg experimental observations, which
tell us, for example, that the left-handed electron (whiohmfs part of a doublet in the SM) does not
have the same interaction will bosons as the right-handed electron (which is a singlet nétio
electroweak isospin that does not feel #1€(2) weak interaction). Models with/ > 2 cannot describe
the physics of the SM patrticles observed at low energy.

184



BEYOND THE STANDARD MODEL FOR MONTANEROS

3.4.2 The particle content in the MSSM
The supermultiplets in the minimAl" = 1 case are
e the chiral supermultiplet that includes a fermion of spia dhd a boson of spin 0,
e the vector supermultiplet that includes a boson of spin larafermion of spin 1/2.

Could we link the particles of the SM in such multiplets,,ieuld we associate quarks and lepton:
with the bosondV, Z, the photon, and so on? The answer is no, because this wasdgdmablems for
the conservation of their quantum numbers. Specificalfygduge bosons and the fermions do not hav
the same transformation properties under the SM gauge gsinge they possess different quantur
numbers, e.g., quarks are triplets of the colour group védsegauge bosons are either octets (the gluon
or singlets (the other gauge bosons), and leptons carrgriemimbers whereas gauge bosons do nc
Simple NV = 1 supersymmetry does not modify these quantum numbers, s@amwetassociate any
gauge boson with a known fermionice versa Therefore, we have to postulate unseen supersymmet
partners for all the known particles. Table 3 lists, for §¥8M particle, the name, spin and notation for
its spartner.

Table 3: Particle content of the MSSM

Particle Spartner Spin
quarks g squarkg 0
—top t stopt

— bottom b sbottond

leptons | sleptons 0

— electrone selectrore

— muon smuonj

— taur staur

— neutrinosy, sneutrinosy,

gauge bosons gauginos 1/2
— photony photino#

— bosonZ Zino Z

— bosonB Bino B

— bosonWW Wino W

— gluong gluino g

Higgs bosons?.>"  higgsinosi =" 1/2

Before going on to the following sections, we make a few okméons. First, we note that the
spartners of SM fermions and gauge bosons are of lower spipriori, one could have considered
associating the fermions of the SM with spartners of spinnti the gauge bosons with spartners o
spin 3/2. However, to introduce a particle of spin 1 woulduiegintroducing a new gauge interaction,
and hence a non-minimal model. Also, introducing partidéspin > 1 would make the theory non-
renormalizable, i.e., it would no longer be possible to dbsloe divergences in perturbation theory in ¢
finite number of physical quantiti€s.

Secondly, we recall that in the SM the right-handed fermiwage different interactions from the
left-handed fermions, e.g., being singletsSdf (2) instead of doublets. In supersymmetry, the left- an
right-hnanded must belong to different supermultiplets] bave distinct spartners, e.g; — ¢, and

2gypergravity does allow a restricted numpér< 8 of spin-3/2 gravitino partners of the spin-2 graviton to beaduced,
but they do not carry conventional gauge interactions.
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qr — qr- These two squarks are quite different, and we use the ithinadlex L or R to identify them,
even though the concept of handedness does not make physitsd for a scalar particle, whose only
helicity is A = 0. In general, thef;, and fz mix, and the physical mass eigenstates are combinatio
of them. In constructing the Yukawa interactions of the MS3$tMs often convenient to work with
superfields that comprise conjugates of fheand their scalar spartners: these are left-handed chil
supermultiplets denoted <.

Thirdly, we note that, besides the new spartners, at leastibwmblets of Higgs bosons are required
To understand why, we recall that, in the study of supersytriokeories, we introduced the notion of
the superpotential. This governs all the possible Yukaweractions of the matter particles with the
Higgs fields. In the SM, if we use a Higgs fieldto give masses to the quarks of type ‘dowwmia
Yukawa couplingsydh, we could use the complex conjugate figitito give masses to quarks of type
‘up’, via couplingsquh*. However, we recall that in a supersymmetric theory the sagtential is
an analytic function of the superfields that cannot depenthein complex conjugates. Therefore, we
must use separate Higgs supermultiplets (denoted by thgitexs) with opposite hypercharge quantunr
numbers, and interactions of the forl@°H,; and QU°H,,. Charged leptons may acquire masse
through interactions of the forthE< H,;. We also note that pairs of Higgs superfields are needed @r orc
to cancel the triangle anomalies that would be generatedduoygimo fermion loops.

Fourthly, we note that in general the Z, W and H mix, and the experimentally observable
mass eigenstates are combinations of these gauginos agsirtug that are generally named neutralino
N{)’273’4, which have zero electrical charge, and chargiﬁ§§ 13, which are electrically charged and mix

the W and theH=.

3.4.3 Interactions in the MSSM

The MSSM is the minimal supersymmetric extension of the @&aeshModel [85,86]. The quarks and the
leptons are put together in chiral superfields with theirespartners that have the same charges und
SU(3)c, SU(2)r y U(1)y. The gauge bosons are placed with their fermionic superpartin vector
superfields. The superpotential of the MSSM is

W=VQUH, +YgQDHy+ Y. LE°Hy + pnH,Hy, (171)

where we recall that th€) and L are the superfields containing the left-handed quarks gutdris,
respectively, and th&c, D¢ and E¢ are the superfields containing the left-handed antiquankisaa-
tileptons, which are the charge conjugates of the rightibdrquarks and leptons. Note that, for clarity,
we have suppressed ti%¢/(2) indexes. The) are3 x 3 Yukawa matrices in flavour space, and do no
have dimensions. After electroweak symmetry breakingy tfiee the masses to the quarks and lepton
as well as the CKM angles and phases. As already mentioned{itygs doubletsH,, y H;, are needed
because of the analytical form of the superpotential.

The uH,H, term is permitted by the symmetries of the MSSM and is reduimeorder to have a
suitable vacuum after electroweak symmetry breaking. Taatty 1 has the dimension of a mass, anc
phenomenology requires it to be of the order of a TeV. Theod . is a puzzle: it might be associated
to the scale of supersymmetry breaking.

The superpotential (171) determines all the non-gaugeaictiens of the MSSM, thanks to the
formula (157), and the form of the effective potential of theory is given by formula (170).

The next-to-minimal supersymmetric extension of the Saashdlodel (NMSSM) [93] is the sim-
plest extension of the MSSM. In this model, the particle eahis modified by the addition of a new
singlet chiral supermultiple$, with some additional superpotential terms:

1 1
WNMSSM = gks?’ + 5#552 + ASH,Hy+ Whassi. (172)

BThese are often denoted RY » 5 , andy,, respectively.
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The principal interest of the NMSSM is to propose a solutmthey problem. Specifically, if the scalar
part of S has a non-zero vacuum espectation vdltig the last term in (172) gives an effectiyeterm:
perf = A(S). Assuming that a soft supersymmetry-breaking scalar n@sS &lso appears i,

its v.e.v. is naturally of the order ofi,, s, ~ O(1) TeV, the typical mass scale of the other scalars ar
gauginos. Thus the effective value pfis of the order of 1 TeV, rather than being a parameter who:
magnitude is independent of the scale of supersymmetryinigga

Phenomenologically the NMSSM differs from the MSSM becaiisslows the lightest Higgs
boson to become heavier. In addition, the fermionic partriief can mix with the four neutralinos of
the MSSM. Thus the experimental signatures of the NMSSM nifésr éignificantly from those of the
MSSM.

3.4.4 Soft supersymmetry breaking

We have discussed so far the supersymmetric aspects of tB&MiSowever, we know that supersym-
metry must be broken: the selectron weighs more than thér@tesquarks weigh more than quarks,
etc. Therefore, we must introduce into the model the bregp&ifrsupersymmetry. However, the mech-
anism and the effective scale of its breaking are still umkmoHence we adopt thad hocstrategy of
parametrizing the breaking of supersymmetry in terms afagiffe soft'* low-energy supersymmetry-
breaking terms that are added to the Lagrangian [94]. Fonargesupersymmetric theory, the form of
these soft supersymmetry-breaking teuflyss; in the Lagrangian is

1 . 1 1
LD Lot = _§(va + c.c) —mi¢idi + (§bij¢i¢j + gaijmmjgbk + c.c). (173)

This breaks supersymmetry explicitly, since only the thegimos\® and the scalarg; have mass terms,
and the trilinear terms with coefficients;; are also not of supersymmetric form. In the case of th
MSSM, L, s; takes the following general form in terms of the spartned§ielf the MSSM:

1 . .
_Esoft = §(M3§}§ + MWW + MiBB + C.C)
+ Q'm3Q+UmEU + DimbD + Lim3 L+ Etm%E
+ (UTCLUQHU — DTG,DQHd — ETaEin + C.C)
+ myy, HyH, +mi HiHg+ (bH, Hg + c.c). (174)

The massed/s;, M and M; of the gauginos are complex in general, which introducesrématers.
The quantitiesng, my, andmg, are the mass matrices of the squarks and sleptons, whittearetian
3 x 3 matrices in family space, adding 45 more unknown paramefene couplingsays, ap, ..., are
also complex3 x 3 matrices, characterized by 54 parameters. In additiongtiaelratic couplings of
the Higgs bosons introduce 4 more parameters, so that thie whgy; contains a total of 109 unknown
parameters, including many that violate CP!

Supersymmetry itself is a very powerful principle whose lempentation introduces only one new
parameter ) in the MSSM. However, in our present state of ignoranceptieaking of supersymmetry
introduces many new parameters. On the other hand, the mwhbeft parameters can be reduced by
postulating symmetries or making supplementary hypothesteasuring the parameters of soft super
symmetry breaking would allow us to go beyond the phenonugicdl parametrization (174), and open
the way to testing models of the high-energy dynamics thedis supersymmetry.

YHere, the adjective ‘soft’ means that they do not introdusadsatic divergences.
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3.4.5 Electroweak symmetry breaking and supersymmetrigd$i bosons
As we have already seen, the Higgs sector of the MSSM corttaimsomplex doublets:

i ) ( 7 )
Hy={ o ), Ha=( 4 ). (175)
(ﬂL Hy

Electroweak symmetry breaking is a little bit more compkchthan its analogue in the Standard Model
At tree level, we can write the effective scalar potentidlefasimplifications whose details we do not
reproduce):

Vo= (lul? +mi )IHG? + (uf® +mig,) [ Hal? = b(H, Hg + c.c)
1
+5(93 + ) (1H, | = [Hg*)*. (176)

The terms proportional tu|? originate from thel” terms in the supersymmetric effective potential, an
the terms proportional to the gauge couplifigs, g2) originate from theD terms. The other terms

originate fromZ,, s, (without mentioning the other scalars that do not play aty here). Spontaneous

electroweak symmetry breaking can arise with this form aéptal if theb parameter satisfies:

0% > (|l + miy, ) (uf* +mi,), (177)
In addition, we want the potential to be bounded from belotaud
2b < 2|uf* +my, + mi, (178)

at tree levell. After electroweak symmetry breaking, both the field$ andHC(l) must develop v.e.v.’s,
in order to give masses to all the quarks and leptons:

< HY >=w,, < H) >=y. (179)

Comparing with the Standard Model, we have

2m>
2 2 2 Z
V=L U= e (180)
(B + )
Conventionally, one defines also the: 5 parameter:
tanf=2.0<B< . (181)
Vg 2
At the minimun of the potential
ov ov
omy ~ oy (182)
giving the two relations
lu>+m¥, = btanpB— % cos® 3,
lul? +my, = bcotﬁ—k%cos2 B. (183)

These expressions are important because they relate anmagasguantity,n , to the soft parameters.
We note that some amount of fine-tuning would be requiredeiitft parameters were much larger thar
myz. We note also that the vacuum conditions (183) do not depenteophase ofi.

15As we shall see shortly, radiative corrections to the efffeqiotential play important roles.
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The two complex Higgs doublets of the MSSM have a tota&d dégrees of freedom. However, the
Higgs mechanism for electroweak breaking uses 3 degreesexddm to give longitudinal polarization
states, and hence masses, to theld#bosons and to th& boson. Therefore, five physical Higgs boson:
remain in the spectrum. Of these, two are neutral Higgs tsostt are even under the CP transformatior
calledr’and H°. In addition, there is one neutral Higgs boson that is odceu@P, called4®. The final
two Higgs bosons are charged, tHe .

At tree level, the masses of the supersymetric Higgs bosans a

1
mioﬂo = 3 <m2Ao +m% F \/(mQAO + m3,)? — 4m?,m?% cos? 25) , (184)
2b
2
= — 185
Mo sin 23’ (185)
m%i = mio + m%v, (186)

and the mass of the” is bounded from above by:
mpo < |cos2B|mz. (187)

This upper limit onm;,o may be traced to the fact that the quartic Higgs couphmgifixed in the MSSM,
being equal to the square of the electroweak gauge couplim¢gp(numerical factors). This means that
A and hencen;,o cannot be very large.

However, the above relations are valid only at tree leved, #i® masses of Higgs scalars have
one-loop radiative corrections that are not negligible].[8Bhe most important corrections fou;, are
those due to the top quark and squark:

3m} mg My, 3mi
Am} = 47r2;2 In ( trInQ t2) + ; f(mtgl,mti,u,tan B), (188)
t

wherem; _ are the physical masses of the stops (that are mixturigsanfd? ), andf(mtg1 , mt32 , 11, tan 3)
is a non-logarithmic function that can be found in [10]. TImerectionAm,% depends quatrtically on the

mass of the top, making it more important than the one-loggections due to other quarks, leptons, anc
gauge multiplets. After including this correction, the maéthe lightest Higgs boson may be as large a

ma < 130 GeV (189)

for masses of sparticles about a TeV. This is seen in Fig. Bichwshowsm;, as a function ofn 40 for
different values oftan 8. As noted, the range (189) for the mass of the lightest sypesic Higgs
boson is in perfect agreement with the indications providgdhe electroweak data, as discussed il
Lecture 1! This is just one of many attractive features oessypmmetry that we review here.

3.4.6 R parity and dark matter

We introduced above the superpotential (174) of the MSSNEmincludes only the Yukawa interactions
of the SM. However, gauge invariance, Lorentz invarianod, analyticity in the SM fields would allow
us to introduce in the superpotential other terms that ddvaw¢ any correspondence with the SM, ant
do not preserve either baryon number and/or lepton nuitb@hese terms are

15The conservation oB and L in the SM is an accidental symmetry of its renormalizableriadtions that is priori not
obligatory. As we see later in the context of Grand Unified drfes, the SM, non-renormalizable terms that violater B
may be added to the SM Lagrangian. In the MSSM, siclnd B-violating may appear at the renormalizable level.
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Fig. 21: The mass of the lightest supersymmetric Higgs boson as aidmraf m 4o for different values ofan

where), X and \” are arbitrary dimensionless coupling constants, and:fteee parameters with the
dimension of a mass.

These parameters are subject to strong phenomenologitattiens. For example, a combination
of the second and third terms would induce rapid disintégmadf the protonvia squark exchange,
whereas the proton is very stable, with a lifetime exceedint)?? years. This implies that the product
of such terms must be strongly suppressed [95]:

NN < 0107). (191)

One way to avoid all such terms is to add to the MSSM a new symyneatled R-parity, given by the
following combination baryon number, lepton number, and sp

R= (_1>3(B—L)+25' (192)

This is a multiplicatively-conserved quantum number in 8id, since all the SM particles and Higgs
bosons have eveR parity: R = +1. On the other hand, all the spatrticles have ddparity (R = —1).

Conservation of? parity would have important phenomenological consequence

e The sparticles are produced in even numbers (usually twima) tfor examplepp — Gg X,
ete” — at .

e Each sparticle decays into another sparticle (or into anmddber of them), for example:
q—qg, [t — py.

e The lightest sparticle (LSP) must be stable, since itRas —1. If it is electrically neutral, it
can interact only weakly with ordinary matter, and may be adgcandidate for the non-baryonic dark
matter that is required by cosmology [34].

The dark matter particles should have neither electricgghaor strong interactions, otherwise
they would be visible or detectable, e.g., through theidivig to ordinary matter to form what would look
like anomalous heavy nuclei, which have never been seenh&vefore expect any dark matter particle
to have only weak interactions, in which case, if it was piatlat a collider such as the LHC, it would
carry energy—momentum away invisibly. Accordingly, mobi@ searches for supersymmetry focus or
events with missing transverse momentum, though searohsghatures oR-violating models are also
considered.

190



BEYOND THE STANDARD MODEL FOR MONTANEROS

The existence of a stable, weakly-interacting LSP is a vapoirtant prediction of the MSSM, but
its nature and its total contribution to the density of dartter depend on the parameters of the MSSNM
One weakly-interacting candidate was the lightest snentbut this has already been excluded by direc
searches at LEP and by experiments searching directly famdatter. The remaining candidate particles
are the lightest neutraling of spin 1/2, and the gravitino of spin 3/2. As we discuss |ategre are
chances to detect a neutralino LSP at the LHC in events wissing energy, or directly as astrophysical
dark matter. On the other hand, the interactions of the tinavare so weak that it could not be detectec
as astrophysical dark matter, and could only be detectackiity in collider experiments.

3.5 Phenomenology of supersymmetry

As we have seen, the soft supersymmetry-breaking sectbedfiESM has over a hundred parameters
This renders very difficult the interpretation of experit@rconstraints and (hopefully) the extraction
of the experimental values of these parameters. A simplifyiypothesis is to assunomiversalityat a
certain scale before renormalization, leading us to thetcaimed MSSM (CMSSM):

e The gaugino masses are assumed to be equal at some input Glupesgravity scaleMs =
My = My = my s,
e The scalar masses of squarks and sleptons are assumed todrealrat the same scalm% =

sz = ...2: m2, as are the soft supersymmetry-breaking contributionfiéaHiggs massem%,u =

e The trilinear couplings are related by a universal coeffici¢, to the corresponding Yukawa
couplings:a, = AoYu, aq = AoYd, ae = AgYe.

Simplifying the MSSM to the CMSSM reduces the number of paatams from over one hundred
to only 4:m; /5, mg, Ao, tan 3 and the sign of: [the magnitude of. is fixed by the electroweak vacuum
conditions: see (183]. The CMSSM hypothesis is very pratfrom a phenomenological point of view,
though questionable from a purely theoretical point of vielhe CMSSM and the simplification of
Loy are inspired by simple supergravity models where the bngasf supersymmetry is mediated by
gravity, though minimal supergravity models actually impdwo additional constraints. On the othel
hand, generic string models often lead to different pastefrsoft supersymmetry breaking.

Dropping universality for squarks or sleptons with the sguantum numbers but in different gen-
erations would lead to problems with flavour-changing reuiiteractions, and Grand Unified Theories
relate the soft supersymmetry-breaking masses of squadksieptons with different quantum numbers.
However, there is no strong theoretical or phenomenolbgizson to postulate universality for the soft
supersymmetry-breaking contributions to the Higgs mas3as may relax this assumption for the Higgs
scalar masses-squared; by assuming the same single-parameter non-universal iiggs parameter
(the NUHML1), or by allowing the non-universal Higgs massamaeters to be different (the NUHM2).

3.6 Renormalization of the soft supersymmetry-breaking peameters

In our ignorance of the underlying mechanism of supersymnimeaking, it is usually assumed that this
occurs at some large mass scale far above a TeV, perhapgddtmugrand unification or Planck scale.
The soft supersymmetry-breaking parameters thereforergnaignificant renormalization between this
input scale and the electroweak scale. Although quadratergences are absent from a softly-broker
supersymmetric theory, it still has logarithmic divergesithat may be treated using the renormalizatio
group (RG).

At leading order in the RG, which resums the leading one-logarithms, the renormalizations
of the soft gaugino masség, are the same as for the corresponding gauge couplings:

dM,

QdQ

= 5(1Maa (193)
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wheref, is the standard one-loop renormalization coefficient idiclg supersymmetric particles that is
discussed in more detail in the next Lecture. As a result @8),1to leading order

. (Q)

aquT

M,(Q) = my /2 (194)
if the gauge couplings,, and the gaugino masses are assumed to unify at the same laggesoale
Mgyr. As a consequence of (194), one expects the gluino to bedrethan the winoimg/my;, =
ag/ae at leading order.

The soft supersymmetry-breaking scalar masses-squageatquire renormalizations related to
the gaugino massesa the gauge couplings, and to the scalar masses and trilineamptersi, via the
Yukawa couplings:

Qdmg 1 2752 2/ 2 2
dQ = 1672 [_gaMa + A (mO + A)\)] . (195)
The latter effect is significant for the stop squark, one ef tfiggs multiplets, and possibly the other
third-generation sfermions thin 5 is large. For the other sfermions, at leading order one has

mg(Q) = mg +Cm3 p, (196)

where the coefficienf’ depends on the gauge quantum numbers of the correspondimgiah. Conse-
quently, one expects the squarks to be heavier than theskepEpecifically, in the CMSSM one finds
at the electroweak scale that

squarks : m?j ~ mi+ 6m% /2> (297)
lef-handed sleptonsnf  ~  mf + 0.5m7 ), (198)
right-handed sleptonsn ~ ~  mg +0.15m] 5. (199)

The difference between the left and right slepton masseshaay implications for cosmology, as we
discuss later. A small difference is also expected betwkemtasses of the left and right squarks, bu
this is relatively less significant numerically.

The CKM mixing between quarks is related in the SM to off-diagl entries in the Yukawa cou-
pling matrix, and shows up in leading-order charged-curneteractions and flavour-changing neutral
current (FCNC) interactions induced at the loop level. Omeilel expect additional FCNCs to be in-
duced by similar loop diagrams involving squarks, which ldquropagate through the RGEs (195) anc
induce flavour-violating terms in the sfermion mass magriddowever, experiment imposes importani
upper limits on such additional supersymmetric flavouratffe As already discussed, these would b
suppressed (though non-zero) if the soft supersymmetgking scalar masses of all sfermions witt
the same quantum numbers were the same before renornmalizatie hypothesis of Minimal Flavour
Violation (MFV) is that flavour mixing of squarks and slepsois induced only by the CKM mixing in
the quark sector and the corresponding MNS mixing in theolepector: see the next Lecture. The MFV
hypothesis requires also that the soft supersymmetnkimgadrilinear parameterst be universal for
sfermions with the same quantum numbets: = ApA. However, the MFV hypothesis does permit the
appearance of 6 additional phases beyond those in the CKMIfardquarks: 3 phases for the different
gaugino mass parameters, and 3 phases for the diffdieodefficients [96].

Results of typical numerical calculations of these rendiration effects in the CMSSM are shown
in Fig. 22. An important effect illustrated there is that R&Es may driven%,u negative at some low
renormalization scal€) v, thanks to the top quark Yukawa coupling appearing in (854 negative
value ofm%,u would trigger electroweak symmetry breaking at a seal@ 5. Since the negative value of

"The effect of the Yukawa coupling is tocreasem? as(Q increases, i.e., tdecreasen? asQ decreases.
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meu is due to the logarithmic renormalization by the top quarkata coupling, electroweak symmetry

breaking appears at a scale exponentially smaller thamghe GUT or Planck scale:

mw O(D) A
— = ¢ — Loy = —. 200
Mcur,p P ( oy ! 4 (200)

In this way, it is possible for the electroweak scale to beegated naturally at a scate 100 GeV if the
top quark is heavym,; ~ 60 to 100 GeV, a realization that long predated the discoveljysifsuch a
heavy top quark.

600
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Fig. 22: Calculations of the renormalization of soft supersymmétigaking sparticle masses, assuming univer
sal scalar and gaugino masseg, m, , at the GUT scale. Note that strongly-interacting sparsi¢iave larger
physical masses at low scales, andfﬂt@u is driven negative, triggering electroweak symmetry biregk

3.6.1 Sparticle masses and mixing

There are aspects of sparticle masses and mixing that ametanpfor phenomenology, as we now dis-
CuUSS.

Sfermions As we have seen, each flavour of charged lepton or quark htadéft and right-handed
components;, r, and these have separate spin-0 boson superpaft;ngrsThese have different isospins
1= %, 0, but may mix as soon as the electroweak gauge symmetry ietrdius, for each flavour we
should consider & x 2 mixing matrix for thefLﬂ, which takes the following general form:

2 2
" Mk
M2 = (201)
d 2 2
fLr frR
The diagonal terms may be written in the form
2 — 2 D? 2
frL.rr me,R + me,R + My (202)

wherem; is the mass of the corresponding fermi@h}?;” is the soft supersymmetry-breaking mas:

discussed in the previous section, emg2 is a contribution due to the quartie terms in the effective
L,R
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potential:

m?LQR =m3 cos2B (I3 +sin? O Qem), (203)

where the termx I5 is non-zero only for the;,. Finally, the off-diagonal mixing term takes the genera
form
d,s,b

mt =g (Ap+pinf) for f=ghitt (204)
Itis clear thath,R mixing is likely to be important for the, and it may also be important for tIﬁ@R
and7r, g if tan g is large.

We also see from (202) that the diagonal entries for¢the would be different from those of

thedr, r andéy g, even if their soft supersymmetry-breaking masses wenetsal, because of th&}

contribution. In fact, we also expect non-universal reraipation ofm? (and alsom? and
tLL,RR brr,RR
2

.. I tan g is large), because of Yukawa effects analogous to thosestisd previously for the

renormalization of the soft Higgs masses. For these reasoes; p are not usually assumed to be
degenerate with the other squark flavours.

m

Charginos. These are the supersymmetric partners of itié and H*, which mix through & x 2
matrix -
1 = = W+ .
~3 (W—,H™) Mc i+ + herm.conj. (205)
where

M = ( My V2mw Sinﬁ) . (206)

V2myy cos 8 It
HereM; is the unmixedSU (2) gaugino mass andis the Higgs mixing parameter introduced previously

Neutralinos: These are characterized byla< 4 mass mixing matrix [34], which takes the following
form in the(W3, B, HY, HY) basis :

—g2v ga2v
Mo 0 \%2 \2&1
g'v2 —g'v1
0 My 7 o
my — (207)
—gav g'v
Bl 0
g2v1 =g'un
vz v k0

Note that this has a structure similar &d- (206), but with its entries replaced Ryx 2 submatrices.
As has already been mentioned, one often assumes thatif®) andU (1) gaugino masses/; » are
universal at the GUT or supergravity scale, so that

o

My~ My 22 (208)
Q2

so the relevant parameters of (207) are generally taken ddbe (az/agur)m /2, pp @andtan 3.

In the limit My — 0, the lightest neutralinge would be approximately a photino, and it would
be approximately a higgsino in the limit — 0. However, these idealized limits are excluded by un
successful LEP and other searches for neutralinos andisbargPossibilities that persist are thabe
approximately a Bino3, or that it has a substantial higgsino component.
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3.7 Constraints on the MSSM

Most of the current constraints on possible physics beybed3M are negative and, specifically, no
sparticle has ever been detected. The concordance withiMhgr&lictions means that, in general, one
can only set lower limits on the possible masses of superstnurparticles. However, there are two
observational indications of physics beyond the SM that,rrayhe supersymmetric context, be usec
for settingupperlimits of the masses of the supersymmetric particles. Asudised earlier, these two
hints for new physics are the anomalous magnetic momeneahtion,g,, — 2, which seems to disagree
with the prediction of the SM (at least if this is calculatesing low-energyete™ data as an input),
and the density of cold dark matt®¢ ;. However, these discrepancies may be explained either w
supersymmetry or with other possible extensions of the SNhair interpretations require special care
Nevertheless, these may be regarded as additional pheptog®al motivations for supersymmetry,
in addition to the more theoretical motivations describedhie beginning of this section, such as the
naturalness of the hierarchy of mass scales in physicsdgnaification, string theory, etc. Therefore, in
addition to considering the more direct searches for sypereetry, it is also natural to ask whgt — 2
andQcpar may imply for the parameters of supersymmetric models. feéi@3 compiles the impacts
of various constraints on supersymmetry, assuming thasdftessupersymmetry-breaking contributions
my /2, mo 10 the different scalars and gauginos are each universaedBUT scale (the scenario called
the CMSSM), and that the lightest sparticle is the lightesttralinoy.

tanB=10,u>0

3000 tanB':55,u>0

3000 T T

2000

mgp (GeV)
mq (GeV)

10004

100 200 300 400 500 600 700 800 900 1000 100 1000 2000

my, (GeV) my, (GeV)

Fig. 23: The CMSSM(m, /2, mo) planes for (afan 3 = 10 and (b)tan 8 = 55, assumingu > 0, Ag = 0,
my = 173.1 GeV andmb(mb)@ = 4.25 GeV. The near-vertical (red) dot-dashed lines are the costfor
mp = 114 GeV, and the near-vertical (black) dashed line is the cantey: = 104 GeV. Also shown by the
dot-dashed curve in the lower left is the region excludedneyUtEP boundn; > 99 GeV. The medium (dark
green) shaded region is excludediby> s+, and the light (turquoise) shaded area is the cosmoloygipediferred
region. In the dark (brick red) shaded region, the LSP is tte¢gedr;. The region allowed by the measurement
of g, — 2 atthe 2¢ level, assuming the* e~ calculation of the Standard Model contribution, is shageak) and
bounded by solid black lines, with dashed lines indicathrey1o ranges (updated from [98]).

Experiments at LEP and the Tevatron collider, in particutave made direct searches for super
symmetry using the missing-energy-momentum signaturd é&fablished lower limits- 100 GeV on
the masses of many charged sparticles without strong @ttena, such as sleptons and charginos. Th
Tevatron collider has established the best lower limitsh@mhasses of squarks and gluines400 GeV.

In view of the greater renormalization of the squark andrgluhasses than for charginos and slepton:
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see (194) and (199), these two sets of limits are quite camgiary.

Another important constraint is provided by the LEP lowenition the Higgs massmpyg >
114.4 GeV [20]. This holds in the Standard Model, for the lightegdg$ bosorh in the general MSSM
for tan 8 < 8, and almost always in the CMSSM for alin 3, at least as long as CP is conservéd
Sincemy, is sensitive to sparticle masses, particularlyvia the loop corrections (188), the Higgs limit
also imposes important constraints on the soft supersymrhetaking CMSSM parameters, principally
my 5 [98], as seen in Fig. 23.

Important constraints are imposed on the CMSSM paramedeedpy flavour physics, specifically
the agreement with data of the SM prediction for the ddcay sv, as well as the upper limit on the
decayBs — ptp, which is important at largean /3 in particular.

We see in Fig. 23 that narrow strips of the, /»,mo) planes are compatible [98] with the range
of the astrophysical cold dark matter density favoured by A¥and other experiments. However, these
strips vary withtan 8 and Ag. In fact, foliation by these WMAP strips covers large fraos of the
(m1/2,m0) plane agan 3 and Ay are varied. Away from these narrow strips, the relic neurtoadiensity
exceeds the WMAP range over most of the, /,, mg) planes shown in Fig. 23. In its left panel, the
relic density is reduced into the WMAP range only in the sldaskeip atmg ~ 100 GeV that extends
to my, ~ 900 GeV. This reduction is brought about by co-annihilationsmeen the LSP (which is
mainly a Bino) and sleptons that are only slightly heavieostmotably the lighter stau and the right
selectron and smuon, which are significantly lighter thanléft sleptons, as discussed earlier. In th
right panel of Fig. 23 fotan 5 = 50, this co-annihilation strip moves to larger,. Also, itis extended to
largerm, /,, as a result of a reduction in the relic density due to rapid x annihilations though direct-
channel heavy HiggsH, A) states. In addition to these visible WMAP regions, ther@igrinciple
another allowed strip at very large valuesnaf, called the focus-point region, where the LSP become
relatively light and acquires a substantial higgsino congm, favouring annihilatioria W W~ final
states.

Finally, also shown in the two panels of Fig. 23 are the regifawoured by the supersymmetric
interpretation of the discrepancy (120) between the expantal measurement gf, — 2 and the value
calculated in the SM using low-energy e~ data [98]. The favoured regions are displayed as ban
corresponding tak20. We see that they can be used to spperlimits on the sparticle masses! In
particular,g,, — 2 disfavours the focus-point region, where) is so large that the supersymmetric con-
tribution tog,, — 2 is negligible, and also the region at large 3 and largem, /, where the neutralinos
may annihilate rapidly though direct-channel heavy-Hig@gdes.

3.8 Frequentist analysis of the supersymmetric parameterpace

In a recent paper [99] the likely range of parameters of theSSM and NUHM1 has been estimated
using a frequentist approach, by building( likelihood function with contributions from the various
relevant observables, including precision electrowealsigis,g,,—2, the lower limit on the lightest Higgs
boson mass (taking into taking into account the theoretinakrtainty in theFeynHiggs calculation of
M}, [100]), the experimental measurement of BR¢ s+)(which agrees with the SM), the experimental
upper limit on BRB, — ptp~), andQepys. This frequentist analysis used a Markov chain Mont
Carlo technique to sample thoroughly the,, m, ,) plane up to masses of several TeV, including thi
focus-point and rapid-annihilation regions, for a widegamwf values ofd, andtan .

We display in Fig. 24 theAy? functions in the(mo, my/2) planes for the CMSSM (left plot)
and for the NUHML1 (right plot). The parameters of the besEMSSM point aremy = 60 GeV,
myp = 310 GeV, Ag = 130 GeV, tan 8 = 11, andpu = 400 GeV (corresponding nominally to
M, = 114.2 GeV and an overali? = 20.6 for 19 d.o.f. with a probability of 36%), which are very

18The lower bound on the lightest MSSM Higgs boson may be relaignificantly if CP violation feeds into the MSSM
Higgs sector [97].
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close to the ones previously reported in Ref. [101]. Theasgonding parameters of the best-fit NUHM1
point aremy = 150 GeV, my, = 270 GeV, Ay = —1300 GeV, tan 8 = 11, andmj = mj, =
—1.2 x 105 GeV? or, equivalently = 1140 GeV, yielding x> = 18.4 (corresponding to a similar fit
probability to the CMSSM) and/;, = 120.7 GeV. The similarities between the best-fit valuesaf,
my /o andtan 3 in the CMSSM and the NUHM1 suggest that the model framewosksl are reasonably
stable: if they had been very different, one might well havendered what would be the effect of
introducing additional parameters, as in the NUHM2 with tvem-universality parameters in the Higgs
sector.

500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 0

m, [GeVic?] m, [GeV/c?]

Fig. 24: The Ax? functions in the(m, my /2) planes for the CMSSM (left plot) and for the NUHML1 (right plot
as found in frequentist analyses of the parameter spacese®@that the co-annihilation regions at lavwy and
m, /o are favoured in both cases [101].

These best-fit points are both in the co-annihilation regithe (1mo, m; 2) plane, as can be seen
in Fig. 24. The C.L. contours extend to slightly larger valaém, in the CMSSM, while they extend to
slightly larger values ofn; /5 in the NUHM1, as was already shown in Ref. [101] for the 68% @&%
C.L. contours. However, the qualitative features offhe? contours are quite similar in the two models,
indicating that the preference for small, andm, , are quite stable and do not depend on details «
the Higgs sector. We recall that it was found in Ref. [101] the focus-point region was disfavoured
at beyond the 95% C.L. in both the CMSSM and the NUHM1. We sdeign 24 that this region is
disfavoured at the levehy? ~ 8 in the CMSSM and> 9 in the NUHM1.

The favoured values of the particle masses in both modelsuate that there are good prospect:s
for detecting supersymmetric particles in CMS [28] and ATR.R9] even in the early phase of the LHC
running with reduced centre-of-mass energy and limitedidosity, as seen in Fig. 25. The best-fit
points and most of the 68% confidence level regions are witlérregion of thgmg, m, ) plane that
could be explored with 100/pb of data at 14 TeV in the centrmas$s, and hence perhaps with 200/ft
of data at 10 Te\°. Aimost all the 95% confidence level regions would be acbésso the LHC with
1/fb of data at 14 TeV. As seen in Fig. 25, in substantial pafrthese regions there are good prospect
for detecting; — ¢¢* ¢~ x decays, which are potentially useful for measuring spartitass parameters,
and the lightest supersymmetric Higgs boson may also betdéte ing decays.

The best-fit spectra in the CMSSM and NUHM1 are shown in Figtl2éy are relatively similar,
though the heavier Higgs bosons, the gluinos, and the ssjuaaly be somewhat heavier in the CMSSM
whereas the heavier charginos and neutralinos may be heaviee NUHM1 [101]. There are con-
siderable uncertainties in these spectra, as seen in Fif9.7 However, in general there are strong

9The comparisons are made with experimental simulationsafo3 = 10 and Ay = 0, whereas the frequentist analysis
sampled all values ofan 8 and Ag. As it happens, the preferred valuestef 5 in both the CMSSM and the NUHM1 are
quite close to 10: the value of;, is relatively unimportant for the experimental analysis.
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Fig. 25: The (mg,m,/2) planes in the CMSSM (upper) and the NUHML1 (lower) fen 3 = 10 and Ay = 0.

The dark shaded areas at lawy and highm, /, are exclu

ded due to a scalar tau LSP, the light shaded areas

low m, /5 do not exhibit electroweak symmetry breaking. The nearlyzomtal line atm, ,, ~ 160 GeV in the
lower panel hamﬁ = 103 GeV, and the area below is excluded by LEP searches. Just #ttiexcontour at low
my in the lower panel is the region that is excluded by trileptearches at the Tevatron. Shown in each plot i

the best-fit point [101], indicated by a star, and the 68
grey/red) overlays, scanned over @alh 5 and Ay values.

(98)% contours from the fit as dark grey/blue (light
The plots also show sorhie discovery contours for

CMS [28] with 1 fb~! at 14 TeV, 100 pb' at 14 TeV and 50 pb' at 10 TeV centre-of-mass energy [101].

correlations between the different sparticle masses, esgified in Fig. 28, though the correlation is

weaker, e.g., for the lighter stau and the LSP in the
Finally, a result from this frequentist analysi

NUHRI1

s that alemaerns LHC physics, but away from

the high-energy frontier. We see in Fig. 29 that the brarghatio for B, — ™ p~ may well exceed
considerably its value in the SM, particularly at latge 8. This is true to some extent in the CMSSM,

and even more so in the NUHM1. Particularly in th
to the LHCb experiment during initial LHC running.

e latter c#sie decay might perhaps be accessibl
Therefpthere may be important competition for

ATLAS and CMS in their quest to discover supersymmetry!

2This reflects the possible appearance of rapid direct-aHammihilations also at lown, ,, and lowtan 3, allowing an

escape from the co-annihilation region whetg ~ ms,.
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Fig. 26: The spectra at the best-fit points: left — in the CMSSM with,, = 311 GeV,mo = 63 GeV, Ay =
243 GeV, tan 8 = 11.0, and right — in the NUHM1 withm, ;, = 265 GeV,mq = 143 GeV, 49 = —1235 GeV,
tan 8 = 10.4, andy = 1110 GeV [101].

4 Further beyond: GUTSs, string theory and extra dimensions
4.1 Grand unification

Gauge theories, particularly non-Abelian Yang—Mills thies, are the only suitable framework for de-
scribing interactions in particle physics. In the SM, thare three different gauge groupd/(3)c,
SU(2)r, andU (1)y, and correspondingly there are three different couplirigs logical to look for a
single, more powerful non-Abelian grand unified gauge greith a single couplingycyr that would
enable us to unify the three couplings, and might provideretting relations between the other differen
SM parameters such as Yukawa couplings and hence fermiosestas As a first approximation, we
assume that the effects of the gravitational interactiemnagligible, which is generally true if the grand
unification scaleM gy is significantly smaller that the Planck mass. As we see, latarrns out that
typical estimations, based on extrapolation to very higérgies of the known physics of the SM [102],
give a grand unification scale of the orderl6f% GeV, which is about a thousand times smaller than th
Planck scaléV/p; = O(10') GeV.

Postulating a single group to describe all the interactiohparticle physics also implies new
relations between the matter particles themselves, asasetiew gauge bosons. Specifically, if the
symmetry changes then the representations, and hencegéngzation of the particles into multiplets,
also change. There are some hints for this in low-energyiphysuch as charge quantization and th
correlation of fractional electrical charges with colobagges, and the cancellation of anomalies betwee
the leptons and the quarks that also lead us to anticipateganiaation simpler than the SM.

Clearly, one must recover the Standard Model at low enengglyiing that in these Grand Unified
Theories (GUTs) one must also study the breaking of the GOUE — SU(3)c @ SU(2), @U(1)y .

This section begins with a presentation of the renormatimegroup evolution equations of the
three SM gauge couplings and studies their possible unditat some GUT scale. Subsequently, som
specific examples of GUTs are discussed, notably the prdigsed on the grow§lU (5), which makes

2ln this section, we denote the couplings dayfor the U (1) subgroupg» for SU(2), andgs for SU(3), which have the
appropriate normalizations for grand unification [seerlate
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Fig. 27: Spectra in the CMSSM (left) and the NUHML1 (right). The veatisolid lines indicate the best-fit values,
the horizontal solid lines are the 68% C.L. ranges, and thiztiatal dashed lines are the 95% C.L. ranges for th
indicated mass parameters [99].
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Fig. 29: The correlation between the branching ratio #yr — x4+~ andtan 8 in the CMSSM (left panel) and
in the NUHML1 (right panel) [99].

possible a simple discussion of many properties of GUTs.s Thifollowed by a short discussion of
typical predictions of these models, such as the decay girthten and the relations between the masse
of the quarks and leptons. We finish by discussing some ofdkierdages, problems, and perspective
of GUT models.

4.1.1 The evolution equations for gauge couplings

The first apparent obstacle to the philosophy of grand utificas the fact that the strong coupling
strengthas = g2 /47 is much stronger than the electroweak couplings at presmnenergieso; >
a9, a1 However, the strong coupling is asymptotically free [9]:

127

a3(Q) =~ (33 — 2N,) In(Q2/A2

R (209)

where N, is the number of quarks)s ~ few hundred MeV is an intrinsic scale of the strong in-
teractions, and the dots in (209) represent higher-loopections to the leading one-loop behaviout
shown. The other SM gauge couplings also exhibit logarithviblations analogous to (209). For ex-
ample, the fine-structure constamt,, = 1,/137.035999084(51) is renormalized to effective value of
aem(mz) ~ 1/128 at theZ mass scale. The renormalization-group evolution for $18&2) gauge
coupling corresponding to (209) is

127 n
(22 = 2Ny — Ny o) In(Q%/A3) 7

as(Q) ~ (210)

where we have assumed equal numbers of quarks and leptah®ais the number of Higgs doublets.
Taking the inverses of (209) and (210), and then taking ti#&rence, we find

I S 11+NH/2>D<Q_2)
a3(Q)  a2(Q) ( 127 ! m2, T (211)

Note that we have absorbed the scalgsand A, into a single grand unification scaldy whereas =
a9.

Evaluating (211) wheri) = O(Myy ), whereas > as = 0(a.n), We derive the characteristic

feature [102]
MGUT _ <O ( 1 >) 7 (212)
mw Qem
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i.e., the grand unification scale is exponentially largew&ssee in more detail later, in most GUTSs there
are new interactions mediated by bosons weigltitign x ) that cause protons to decay with a lifetime
am’. In order for the proton lifetime to exceed the experimefitait, we needmx = 10** GeV and
hencea.,, < 1/120 in (212) [103]. On the other hand, if the neglect of gravitydse consistent, we
needmy < 10! GeV and hencev.,, = 1/170 in (212) [103]. The fact that the measured value of th:
fine-structure constat,,, lies in this allowed range may be another hint favouring ther@hilosophy.

Further empirical evidence for grand unification is proddesy the prediction it makes for the
neutral electroweak mixing angle [102]. Calculating theamenalization of the electroweak couplings,

one finds 9
11

<in ngw:§ _ Qem _Olnm_QX ’ (213)

Oég(mw) 8 47 9 myy

which can be evaluated to yiekin? #y ~ 0.210 to 0.220, if there are only SM particles with masse
< mx [102]. This is to be compared with the experimental vaiué 6y, = 0.23120 £ 0.00015 in the
MS renormalization scheme. Considering thiaf’ 6y, coulda priori have had any value between 0 anc
1, this is an impressive qualitative success. The smaltefisaicy can be removed by adding some extr
particles, such as the supersymmetric particles in the MSSM

To see this explicitly, we may write

q”
sin?f(mz) = =

e 91(mz) (214)
g +9”

3
5g3(mz) + 2gi(mz)’

whereg; is defined in such a way that its quadratic Casimir coefficismtnmed over all the particles in
a single generation, is the same asdgm@nd g3, which is the appropriate normalization within a GUT.
Using the one-loop RGESs, we can then write

. 1 Qem(myz) 1 /by — b3
2 _ LA R 21
sin“ 0(mz) T+ 82 [31’4— as(m) ] 5 (bl —bz) ; (215)

where theb; are the one-loop coefficients in the RGEs for the different &uplings. Their values in
the SM (on the left) and the MSSM (on the right) are:

4
§NG — 11 « bg — 2NG -9 = -3 (216)
1 4 22 1
N+ Ne— 5 « b = SNg+2Ng—6 = +1 (217)
1 4 3 33
— Ny + =N, b Z Ny +2Ng = = 218
oVE +3Ne « b = {5 Nm+ 2N z (218)
23 1

Experimentally, using@ve,,,(mz) = 1/128, a3 = 0.119 4 0.003, sin? Oy (mz) = 0.2315, we find

1
_ 22
YT 5021007 (220)

in striking agreement with the MSSM prediction in (219)!

Another qualitative success is the prediction of thguark mass [104, 105]. In many GUTSs,
such as the minima$¥U (5) model, discussed shortly, tlhequark and the- lepton have equal Yukawa
couplings when renormalized at the GUT sale. The renorie#diz group then tells us that

2 33%
LN [m (m—g>] " (221)
m, m5
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Usingm., = 1.78 GeV, we predict that,, ~ 5 GeV, in agreement with experiment. Happily, this pre
diction remains successful if the effects of supersymmgiticles are included in the renormalization-
group calculations [106].

To examine the GUT predictions fein? Ay etc. in more detail, one needs to study the renorms
lization-group equations beyond the leading one-looproffierough two loops, one finds that

0a;(Q) 1 bij 2
—=—— b+ = «q; i , 222
Q%5 - (b3 (@) @ 222)
where theb; receive the one-loop contributions
4 1
3 10
0
bi=|-2|+Ng|5|+Nu| (223)
—11
4
3 0

from gauge bosonsy, matter generations amdly Higgs doublets, respectively, and at two loops

19 3 44 9 9
0 0 0 5 5 15 5 10 0
by=[0 =35 0 |4+N [t 2 4|4+Ng|S 2 0], (224)
0 0 -—102 + 3 I 0 0 0

It is important to note that these coefficients are all indeleat of any specific GUT model, depending
only on the light particles contributing to the renormatiaa.

Including supersymmetric particles as in the MSSM, one f[a03]

0 2 2
bi=|-6|+Nyg|2|+Npgy| fracl2 |, (225)
-9 2 0
and
0 0 0 Ben bod o
bij=10 —24 0 |+N,[2 14 8|+Ng|ZE I 0f, (226)
0 0 —54 3 68 0 0 0

5
again independent of any specific supersymmetric GUT.

One can use these two-loop equations to make detailed aatms ofsin? 6y in different GUTS.
These confirm that non-supersymmetric models are not densiwith the determinations of the gauge
couplings from LEP and elsewhere [108]. Previously, we adgthat these models predicted a wrong
value forsin? Ay, given the experimental value of. In Fig. 19(a) we see the converse, namely the
extrapolating the experimental determinations ofdheising the non-supersymmetric renormalization
group equations (223), (224) does not lead to a common valhe gauge couplings at any renormaliza-
tion scale. In contrast, we see in Fig. 19(b) that extragmiaising the supersymmetric renormalization-
group equations (225), (226peslead to possible unification &l ~ 10'6 GeV [89), if the spartners
of the SM particles weigh- 1 TeV.
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Turning this success around, and assumipg= as = a1 at Mgy with no threshold corrections
at this scale, one may estimate that [109]

2 ~
Gin2 0 (My)| = 0.2029 4 [Gem y Gem [—31n <ﬂ> + By (ﬁ)
S 153 207 my 3 mg

32 <m—W) —In <@) —4In <L> +] (227)
3 my my mgz

Setting all the sparticle masses to 1 TeV reproduces appeigly the value ofin? 6y, observed exper-
imentally. Can one invert this successful argument to edérthe supersymmetric particle mass scale
One can show [110] that the sparticle mass thresholds in) @&2vYbe lumped into the parameter

1/19

14/19 3/38 2 \2/19 3 3 07
S L m T I M (228)
susy — ‘,U,‘ mg 2 2 mg m§ m3 .
Us

K K i=1 Cr, d;

If one assumes sparticle mass universality at the GUT sitedn,[110]

g\ 32
Tsusy = ‘:U" (Oé_g)

approximately. The measured valuesof? dy; is consistent Withl s, ~ 100 GeV to 1 TeV, roughly
as expected from the hierarchy argument. However, the taictes are such that one cannot use thi
consistency to constraif,, very tightly [111]. In particular, even if one accepts thevensality
hypothesis, there could be important model-dependershbte corrections around the GUT scale [109
112].

1

N =

: (229)

4.1.2 Specific GUTs
What groups may be used to construct a GUT [113]?

First, suitable groups must be sufficiently large to incltite SM. The latter is of rank four, i.e.,
there are four simultaneously-diagonalizable symmetnegators’?: SU(3)¢ have two,SU(2), one,
andU(1)y one also. It is striking that all of the diagonal generatoesteaceless: this is trivial for the
non-Abelian groupsSU (3)c and SU(2)r,, but non-trival forU(1)y, and a possible hint that it should
be embedded in a non-Abelian GUT group. Therefore, we mssffiid in the Cartan classification of
Lie groups a group of rank higher than or equal to four. SelgoadGUT group must possess complex
representations, in order that the matter particles aridah@particles (described by complex conjugate
spinors) could be in inequivalent representations. Thirde should also keep track of the hypercharge
Y = @ — T3. One of the major puzzles of the SM is why

> Qi =3Qu+3Qq+ Qe =0. (230)

q,£

In the SM, the hypercharge assignmentsayeiori independent of th&U (3) x SU(2), assignments,
although constrained by the fact that quantum consisteagyires the resulting triangle anomalies tc
cancel. In a simple GUT group, the relation (230) is automatiheneverQ is a generator of a simple
gauge groupy  , @ = 0 for particles in any representatid®, cf., the values of in any representation
of SU(2).

There are only two groups of rank 4 that have complex reptatens and hence are suitable
a priori for GUTs, namelySU (5) and SU(3) ® SU(3). However,SU(3) ® SU(3) does not allow

22Each one is associated with a quantum number, a ‘chargétrtiabe used to label particle states.
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simultaneously the leptons to have an integer electricgghand the quarks to have a fractional electrit
charge. Moreover, if one tried to usé/(3) x SU(3), one would need to embed the electroweak gau
group in the secondU (3) factor. This would be possible only Eq Qq = 0 = >, Q¢ Which is not
the case for the known quarks and leptons. Therefore, mitehés focused 08U (5) [113] as the only
possible rank-4 GUT group.

The groupSU (5) is the simplest GUT group capable of including the SM. Ottessible GUT
groups have higher rank, and groups that are commonly usefl’#10), the only suitable simple group
of rank 5 with complex representations, and the exceptigraip Eg of rank 6. As examples that may
help understand the new physics that appears when the syyafighe SM is enhanced, we are first
going to study key aspects of the grabify (5) and then, more briefly, some aspects of the gr8(g10).

The SU(5) group

As in the SM, particles must be arranged in suitable reptatens of SU(5). This group has a
fundamental spinorial representation of dimension 5 antha@x antisymmetric spinorial representation
of dimension 10. Together they are suitable for accommogaitie fermions of a given generation, which
consist of3 x 2 x 2 = 12 quarks + 2 charged leptons + 1 neutrino. To see how this mapihe, dve first
decompose the smallest representationS6{5) in terms of representations 61/ (3) ® SU(2):

)
)

For example, in (231) the representat®of SU(5) can accommodate a colour antitriplet that is also a
SU(2) singlet, and a colour singlet that is also.%i (2) doublet. In addition, it is necessary that the sun
of the charges in each of these two multiplets be zero. Thepmodsible combination of first-generation
fermions in the SM is:

5 = (
10 = (

(1,2), (231)

3,1) +
3,1)+(3,2) + (1,1). (232)

dy
do
5:(i)L=1| ds ; (233)
—ve ),
and the rest of the first-generation fermions may be accorateddiniquely, as follows:

0 us —U2 U1 dl
- 1 —Us 0 Up U9 do
10: (XZJ)L = ﬁ Uy  —Up 0 us ds , (234)

—u; —us —uz 0 et

—Cll _d2 —Clg —€+ 0 L

where we neglect the eventual mixings between the fermiomifierent generations. We must repeat
the previous classification of fermions 10 + 5 representations for the other two generations: there
no explanation irSU (5) for the presence of three generatiéfs

After discussing the matter fermions, we now discuss the @didge bosons. Groups of type
SU(N) have N? — 1 symmetry generators in an adjoint representation (€§.(3)c has 8 gluons,
SU(2) has 2W bosons, etc.), so thefU(5) has 24 gauge bosons. Of these 24 gauge bosons,
correspond to the SM gluong/*, Z° and~, and 12 are new. Decomposing this 24-dimensional adjoil
representation into representationsSéf(3) ® SU(2) ® U(1), we find

) - 5
24 = (3727 _) ©® (3727__) ©® (87 170) ©® (17370) ©® (17170) ) (235)
: > e W v
gluons Gg i

new bosons

ZThe pairing ofs and10 representations is free of triangle anomalies.
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where the third numbers in the parentheses are the hypgeshaf the multiplets. The new bosons,
called X andY’, have electric charges 4/3 and 2/3, respectively, cartpdpark quantum numbers, are
coloured and have isospin 172 In matrix notation,

Gi Gi Gi X Y

A=) "T,A=| G G; Gi X Y |, (236)
a=1 X X X WZ' Wi
Y Y Y W W

where theT;, are the generators &fU (5) represented b§ x 5 matrices (the equivalents f&fU (5) of
the Pauli matrices 06U (2)). The basis is chosen so thsit/(3). corresponds to the first three lines
and columns, andU (2), to the last two lines. The top-left and bottom-right blockerefore contain
the gluons andV bosons, respectively, and tlig 1) bosonB (not shown) corresponds to a traceles:
diagonal generator.

The remaining steps in constructing 8/ (5) GUT are the choices of representations for Higg:
bosons, first to brealkU (5) — SU(3) x SU(2) x U(1) and subsequently to break the electrowea
SU((2) x U(1)y — U(1)m. The simplest choice for the first stage is an adj@utof Higgs bosonsp
with a v.e.v.

100 0 0
010 0 0

<0@P>=fo 0 1 0 0 |xOmeur). @0
000 : -3 0
000: 0 -3

It is easy to see that this v.e.v. preserves coklif3), which reshuffles the first three rows and columns
weak SU (2), which reshuffles the last two rows and columns, and the lejyaegeU (1), which is a
diagonal generator. The subsequent breaking@f2) x U(l)y — U(1)en is most economically
accomplished by & representation of Higgs bosom&

< 0|¢|0 >=(0,0,0,0,1) x O(my). (238)

It is clear that this v.e.v. has a$iU(4) symmetry which yields [104] the relatiom;, = m, before
renormalization that leads, after renormalization (2815 successful prediction fot, in terms ofm..
However, the same trick does not work for the first two gemamat indicating a need for epicycles in
this simplest GUT model [114].

Making the minimalSU (5) GUT supersymmetric, as motivated by the naturalness of dogey
hierarchy, is not difficult [94]. One must replace the abow¢TGnultiplets by supermultipletss £ and
10 T for the matter particle24 ® for the GUT Higgs fields that breakU (5) — SU(3) x SU(2) x
U(1). The only complication is that one needs b&tand5 Higgs representation& and [ to break
SU(2) x U(1)y = U(1)em, just as two doublets were needed in the MSSM to cancel anesreahd
give masses to all the matter fermions. The simplest paséipin of the Higgs potential is specified by
the superpotential [94]:

Wz(u—k%M)Jr/\}_I(bH—kf((I)) (239)

#They have direct interactions with quarks and leptons, whie discuss in the next section.
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wherep = O(1) TeV andM = O(Mgyr), andf(®) is chosen so thalf /0P = 0 when

100: 0 0
010 0 0
<0®0>=M1|o 0 1 0 0 (240)
000 : -3 0
000: 0 -3

Inserting this into the second term of (2_39), one finds tek&H 3 H3, — 3/2\M H, H, for the colour-
triplet and weak-doublet components [dfand H, respectively. Combined with the bizarre coefficien
of the first term, these lead to terms

BA _
W 3 (u+ = M)Hs Hs + pHoHo. (241)

Thus we have heavy Higgs triplets with masé¥s\/cyr) and light Higgs doublets with masséX ).
However, this requires fine tuning the coefficient of the fiesm in W (239) to about 1 part in0'3! In
the absence of supersymmetry, such fine tuning would beogestby quantum loop corrections [105].

A primary advantage of supersymmetry is that its no-rentimaigon theorems [80, 81] guarantee
that this fine tuning igatural, in the sense that quantum corrections do not destroy ikeuttie situation
without supersymmetry. On the other hand, supersymmetyeatioes not explain therigin of the
hierarchy. A second advantage of supersymmetry, as we géer @athis section, is that it would make
possible a much more precise unification of the gauge cayslillowever, a potential snag is that the
exchanges of the supersymmetric partners of the heavy Higdsts H3, H; may cause rapid proton
decay, as discussed later.

Another possible GUT group that is frequently studiedd(10) [113,115]. Itis a group of rank
5, that containsSU (5) ® U(1). The principal advantage afO(10) over SU(5) is that it possesses
a fundamental spinorial representation of dimension 16dha accommodate all the fermions of one
generation, as well as a singlet right-handed neutrinakihao its decomposition in terms 6fU (5)
representation$
16=1005® 1. (242)

The appearance of &1/ (5) singlet provides a natural framework for the physics of thetrinos and the
seesaw mechanisff. In SO(10) the number of gauge bosons rises to 45, which includes 33@uili
gauge bosons beyond the SM, and therefore many possibtadtibms, including additional options for
proton decay. In addition, the breaking.®®(10) is more complicated than that 6¥/(5), because it is
done in two steps. One may pass fréf@(10) to SU(5) ® U(1) or SU(4) ® SU(2)r ® SU(2)r, and
then toSU(2) ® U(1). The Higgs sector is potentially quite extensive, and maluufe large multiplets
of dimensions 10, 16, 45, 54, 120 and 126, depending on thelmod

4.1.3 Baryon decay

Baryon instability is to be expected on general groundgesthere is no exact gauge symmetry to guai
antee that baryon numbét is conserved. Indeed, baryon decay is a generic predicfi@uUds, which
we illustrate with the simplestU(5) model, that is anyway embedded in larger and more compticat:

The SO(10) group is anomaly-free, so this decomposition explains|iiriak freedom from anomalies &/ (5) and the
SM.

%In SU(5), singlet right-handed neutrinos could be added ‘by handitiich case they would have no gauge interactions. Ii
the case 050(10), the gauge interactions 6fO(10) do not have any direct influence on accessible neutrino phenology,
but may provide interesting restrictions on their Yukawtactions.
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Fig. 30: Diagrams contributing to baryon decay (a) in minin§&l(5) and (b) in minimal supersymmetrkl (5)

GUTs. We see in (236) that there are two species of gauge $asa1/(5), called X andY’, that
couple the colouSU (3) indices (1,2,3) to the electrowe&k/ (2) indices (4,5). As we can see from the
matter representations (234), these may enable two quaksjoark and lepton to annihilate, as seel
in Fig. 30(a). Combining these possibilities leads to aarauttion withAB = AL = 1. The forms of
effective four-fermion interactions mediated by the exuyes of massivel andY bosons, respectively,
are [105]

g
(EijkuRk'YuuLj) X (2er v dr, + e ¥ dg,) ,

(esmummdr,) X5 (vpy*dr,) | (243)

up to generation mixing factors.
Since the gauge couplings, = gy = g3,2,1 inanSU(5) GUT, andmx ~ my, we expect that

Gx= 2 ngy= T (244)
8m3 8m?,

It is clear from (243) that the baryon decay amplitulex G'x, and hence the baryaB — /4 meson

decay rate
I'p = cG?Xmg, (245)

where the factor ofng comes from dimensional analysis, anis a coefficient that depends on the GUT
model and the non-perturbative properties of the baryomaesbn.

The decay rate (245) corresponds to a proton lifetime
Tp = — —=. (246)
Itis clear from (246) that the proton lifetime is very seivsitto m x, which must therefore be calculated
very precisely. In minimabU (5), the best estimate was
my =~ (1t02) x 10" x Agep (247)

whereAgcp is the characteristic QCD scale in thES prescription with four active flavours. Making an
analysis of the generation mixing factors [116], one findd the preferred proton (and bound neutron
decay modes in minimaU (5) are

p—>e+7r0, etw, vt /ﬁ'KO,

n—etn, etp, vn®, ..., (248)
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and the best numerical estimate of the lifetime is

A 4
7(p — et7n%) ~ 2 x 1031+ (ﬁ) Y. (249)

This is inprima facieconflict with the latest experimental lower limit
7(p = etn?) > 8.2 x 103y (250)

from super-Kamiokande [117]. However, this failure of miail SU (5) is not as conclusive as the failure
of its prediction forsin? 6y .

We saw earlier that supersymmetric GUTS, includig(5), fare better withsin? 0yy,. They also
predict a larger GUT scale [107]:
myx ~ 2 x 10'% GeV, (251)

so thatr(p — e ) is considerably longer than the experimental lower limitowver, this is not
the dominant proton decay mode in supersymmeiii&{5) [118]. In this model, there are important
AB = AL = 1 interactions mediated by the exchange of colour-triplgighinos Hs, dressed by
gaugino exchange as seen in Fig. 30(b) [119], these give

/\2g2> 1

—, (252)

Gx =+ O
X (167r2 m,m

where) is a generic Yukawa coupling. Taking into account coloutdecand the values of for more
massive particles, it was found [118] that decays into ogrand strange particles should dominate:

p—>vKY, n—oK", ... (253)

Because there is only one factor of a heavy mags in the denominator of (252), these decay modes ai
expected to dominate over— e 7 etc. in minimal supersymmetrisU (5). The current experimental
limitis 7(p — vKT) > 1033y [120]. Calculating carefully the other factors in (252) {12it seems
that the modes (253) may be close to detectability in thisehqabssibly even too close for comfort, in
which case a more complicated supersymmetric GUT might bdet

There are non-minimal supersymmetric GUT models such gsefliU (5) [122] in which the
Hs- exchange mechanism (252) is suppressed. In such models¢™ 70 may again be the preferred
decay mode [123]. However, this is not necessarily the a@aseplour-triplet Higgs boson exchange
may also be important, in which cage — pt K could be dominant [124], or there may be non-
intuitive generation mixing in the couplings of tié andY bosons, offering the possibility — ;7"
etc. Therefore, the continuing search for proton decayldhmeiopen-minded about the possible deca
modes. The current experimental limits for these process-@r — e*7%) > 1033y [117], 7(p —
ptKY) > 1033y [120], andr(p — pt70) > 1033y [117)].

4.1.4 Neutrino masses and oscillations

The experimental upper limits on neutrino masses are fambte corresponding lepton masses [13]
From studies of the end-point of tritiughdecay, we have

my,, S 2eV, (254)

to be compared withn, = 0.511 MeV. Neglecting mixing effects, from studies of— p1/, decays, we
have
my,, < 190 keV, (255)
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to be compared withn,, = 105 MeV, and from studies of — pions +v,, again neglecting mixing
effects, we have
my, < 18.2 MeV, (256)

to be compared withn.- = 1.78 GeV.

On the other hand, there is no good symmetry reason to expeoeutrino masses to vanish. We
expect masses to vanish only if there is a corresponding ggaige symmetry, cfri, = 0 in QED with
an unbrokerlU/ (1) gauge symmetry.

However, although there is no candidate gauge symmetrystarem,, = 0, this is a prediction of
the SM. We recall that the neutrino couplings to chargedleptake the form

Ju = é’m(l - ’)/5)V€ + ﬂ'Yu(l - 75)”;1 + %Vu(l - 75)”7; (257)

and that only left-handed neutrinos have ever been detelctéde cases of charged leptons and quark:
their masses arise in the SM from couplings between left-ragid-handed componenisa a Higgs
field:

Iufr Har=1 ar=o frfr +hec. —myp = ngf<0|HAI:%,AL:O|O>' (258)

Such a left-right coupling is conventionally called a Diraass. The following questions arise for
neutrinos: if there is n@g, can one haven, # 0? On the other hand, if there istg&, why are the
neutrino masses so small?

The answer to the first question is positive, because it isiplgsto generate neutrino masseés

the Majorana mechanism that involves the alone. This is possible because @) field is in fact

left-handed: (fr) = (f°). = f£C, where the superscrigf’ denotes a transpose, antis a2 x 2
conjugation matrix. We can therefore imagine replacing
(fr)fL = fL C fu. (259)

which we denote by} - 1. In the cases of quarks and charged leptons, one cannotagemeasses in
this way, becausey, - q;, hasAQ..,, A(colour) # 0 and/y, - £;, hasAQ.., # 0. However, the coupling
vy, - vy, is not forbidden by such exact gauge symmetries, and woalttltte a neutrino mass:

mM uf Cvp = mM(ﬁ)LyL =mMy, vy, (260)

Such a combination has non-zero net lepton nurndber= 2 and weak isospifdl = 1. There is no
corresponding Higgs field in the SM or in the minim@&l/ (5) GUT, but there is no obvious reason to
forbid one. If one were present, one could generate a Magonautrino massia the renormalizable
coupling

Gy Har—1ar—r1 vi -vr = m™ = Gro, (0|Har=1,A1-2(0). (261)
However, one could also generate a Majorana mass withottauadditional Higgs fieldyia a non-
renormalizable coupling to the convention®l = 3 SM Higgs field:

1 1
— (Harogve) - (Hapoyn) = m™ = —(0Hy_1[0)% (262)
whereM is some (presumably heavy mass scale:> my ).

The simplest possibility for generating a non-renormaligdnteraction of the form (262) would
beviathe exchange of a heavy fiel that is a singlet o6U (3) x SU(2) x U(1) or SU(5):

1 22
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where one postulates a renormalizable coupNith;—; v, - N. As already mentioned, such a heavy
singlet field appears automatically in extensions of$b&5) GUT, such assO(10), though it does not
actuallyrequirethe existence of any new GUT gauge bosons.

We now have all the elements we need for the see-saw mass @i favoured by GUT model-

builders: o b
(v, N)- <Z§D A”}M) (’jé) , (264)

where thev;, - v, Majorana massn? might arise from aAl = 1 Higgs with couplinggz ., (261),
the vz, - N Dirac massn” could arise from a conventional Yukawa coupling263) and should be
of the same order as a conventional quark or lepton massj)&AHdcould a priori be O(Mgyr) 27
Diagonalizing (264) and assuming that’ = 0 or that(0| Ha7=1|0) = O(m3,/mcur), as generically
expected in GUTSs, one obtains the mass eigenstates

2
VL+o(m—W>N : m:O<mW)7 (265)
mx Mgaur
N4+0 <m—W) v © M = O(Mayr). (266)
mx

We see that one mass eigenstate (265) is naturally mucletighdan the electroweak scale, whereas th
other (266) is naturally much heavier.

There is evidence for atmospheric neutrino oscillatiorz/[lbetweenv,, and v, with Am? ~
(1072 to 1073) eV? and a large mixing anglesin® A3 = 0.9. In addition, there is evidence [128]
for solar neutrino oscillations witihm? ~ 105 eV? andsin® 612 ~ 0.6. We also know that the
third neutrino mixing anglé,3 must be small, but it is an open experimental question just $roall
it may be. The pattern of MNS neutrino mixing seems very dgifé from that of CKM quark mixing,
perhaps reflecting special ingredients related to the a@easechanism. Other open questions includ:
the magnitude of the CP-violating phase in the neutrino mgixinatrix (analogous to the Kobayashi—
Maskawa phase in quark mixing), and also the sequence aimeumtass eigenstates.

CP-violating decays of heavy singlet neutrinos providenapg mechanism for generating the
baryon number of the Universe [129], by first providing a tepasymmetry that is subsequently con-
verted partially into a baryon asymmetry by non-pertuslzaglectroweak interactions [15]. Essential
ingredients in this scenario are the violation of lepton benvia Majorana neutrino masses and CF
violation [38]. The CP-violating phase observable in n@atroscillations does not play a direct role
in this scenario for baryogenesis [130], but its observatimuld nevertheless be of great conceptue
importance.

4.2 Local supersymmetry and supergravity

Why study a local theory of supersymmetry [82,83]? One natitiv is the analogy with gauge theories,
in which bosonic symmetries are made local. Another is thedllsupersymmetry necessarily involves
the introduction of gravity. Since both gravity and (sutelupersymmetry exist, this seems an inevitabl
step. It also leads to the possibility of unifying all the fode interactions including gravity, which was
one of our original motivations for supersymmetry. Morepvis interesting that local supersymmetry
(supergravity) admits an elegant mechanism for supersymirbeeaking [131], analogous to the Higgs
mechanism in gauge theories, which allows us to address saoigusly the possible existence of a
cosmological constant.

2"t is often assumed that there are three singlet neutivdsut this need not be the case. If there were only two, oneeof th
light neutrinos would be massless. On the other hand, tleerel ®e many more than three [126].
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The basic building block in a supergravity theory [82, 83}tie graviton supermultiplet, which
contains particles with helicitie, 3/2), the latter being the gravitino of spifY2. Why is this required
when one makes supersymmetry local?

We recall the basic global supersymmetry transformatias (.50, 151) for bosons and fermions.
Consider now the combination of two such global supersymeinsformations

[61,02] (¢ or ) = —(E274é1) (10,) (¢ OF ¥) + ... (267)

The operator(i ,,) corresponds to the momentuf),, and we see again that the combination of twc
global supersymmetry transformations is a translationnster now what happens when we conside
local supersymmetry transformations characterized byrging spinoré(x). It is evident that the in-
finitesimal translatiorfoy*¢; in (267) is nowz-dependent, and the previous global translation becom
a local coordinate transformation, as occurs in GeneratiRy.

How do we make the theory invariant under such local supearsgtny transformations? Consider
again the simplest globally supersymmetric model comtgira free spin-1/2 fermion and a free spin-C
boson (143), and make the local versions of the transfoomai{151), we can obtain

SL=0,(- ) + 29y, @S(0"&()) + herm. conj. (268)

In contrast to the global case, the actidn= f d*zL is not invariant, because of the second term il
(268). To cancel it out and restore invariance, we need melasfi

We proceed by analogy with gauge theories. In order to makéitretic term(iv) @) invariant
under gauge transformations— ¢“(*)¢), we need to cancel a variation

8,0 e(x), (269)
which is done by introducing a coupling to a gauge boson
gy At () (270)
and the corresponding transformation
SA,(z) = iﬁue(x). 271)
In the supersymmetric case, we cancel the second term in k368 coupling
KUY PSYH () (272)

to a spin-3/2 spinot)*(x), representing a gauge fermion or gravitino, with the cquoesling transfor-
mation

oYPH = —% 0H¢(x), (273)

wherex = 8 /m3.
For completeness, let us at least write down the Lagrangiainé graviton—gravitino supermulti-

plet
1 1 -
L= _ﬁ vV—gR — 5 Euypg¢u757uppwoy (274)
whereg denotes the determinant of the metric tensor
Juv = G,T??mnﬁff, (275)

€ is the vierbein and,,,, the Minkowski metric tensor, ari®, is a covariant derivative

1 mn
D,=0,+ 1Y [Ym» nl, (276)

212



BEYOND THE STANDARD MODEL FOR MONTANEROS

wherew"" is the spin connection. This is the simplest possible géigeravariant model of a spin-3/2
field. It is remarkable that it is invariant under the locgbstsymmetry transformations

st = 5@ (o),

dwy™ = 0,00, = éDuf(m), (277)
just as the simplest possib{é/2,0) theory (143) was globally supersymmetric, and also theoaaif
an adjoint spin-1/2 field in a gauge theory.

As already remarked, supergravity admits an elegant analo§the Higgs mechanism of spon-
taneous symmetry breaking [131]. Just as one combines thedlarization states of a massless gaug
field with the single state of a massless Goldstone bosonttirotie three polarization states of a mas
sive gauge boson, one may combine the two polarizationsstdte massless graviting, with the two
polarization states of a massless Goldstone fermida obtain the four polarization states of a mas
sive spin-3/2 particl&Z. This super-Higgs mechanism corresponds to a spontaneeakdown of local
supersymmetry, since the massless graviidmas a different mass from the gravitig

mag =0 # mg. (278)

This is the only known consistent way of breaking local sapemmetry, just as the Higgs mechanism is
the only way to generateyy # 0.

Moreover, this can be achieved while keeping zero vacuumggneosmological constant), at
least at the tree level. The reason for this is the appeararioeal supersymmetry (supergravity) of a
third term in the effective potential (170), which hasegativesign [131]. There is no time in these
lectures to discuss this exciting feature in detail: therested reader is referred to the original literatur:
and the simplest example [132]. In this particular case; V' = 0 for anyvalue of the gravitino mass,
for which reason it was named no-scale supergravity [133].

Again, there is no time to discuss here details of the cogplihsupergravity to matter [131].
However, it is useful to have in mind the general featureseftheory in the limit where — 0, but the
gravitino massngs = msg, remains fixed. One generally has non-zero gaugino massgsoc ms s,
and their universality is quite generic. One also has noo-gealar masses o mg,, but their univer-
sality is much more problematic, and even violated in gergring models. It was this failing that partly
refuelled interest in gauge-mediated models. A generiergpavity theory also yields non-universal
trilinear soft supersymmetry-breaking couplingg\¢® : A, mg/, and bilinear scalar couplings
B, u¢? : B, o mg /. Therefore, supergravity may generate the full menagérmsefb supersymmetry-
breaking terms:

—% > mags, VaVa =Y mi |oil* — (Z Ay + h.c.) — (Z Buud* + h.c.) . (279)
a i A w

In a minimal supergravity (nNSUGRA) framework, the gauginassesn, ,,, scalar massesy, and
trilinear couplngsA are universal, as assumed in the CMSSM, but there are spegifditions: B =

A — 1, and the gravitino mass is fixedh,, = mo. The former condition is more restrictive than in the
CMSSM, and the latter condition implies that the gravitiadhie LSP in significant regions of parametel
space. Hence, the CMSSM and mSUGRA are distinct scenar3ds. [1

Since these soft supersymmetry-breaking parameters aegaged at the supergravity scale nea
mp ~ 1019 GeV, the soft supersymmetry-breaking parameters are malized as discussed earlier.
The analogous parameters in gauge-mediated models waddbel renormalized, but to a different
extent, because the mediation scatem p. This difference may provide a signature of such models, :
discussed elsewhere [135, 136].
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Also renormalized is the vacuum energy (cosmological @mgtwhich is a potential embarass-
ment. Loop corrections in a non-supersymmetric theory aeetapally divergent, whereas those in a
generic supergravity theory are only quadratically dieeitgsuggesting a contribution to the cosmolog
ical constant of ordemg/Qm%, perhaps)(10~32)m?%,! Particular models may have a one-loop quantur

correction of ordem§ o = O(10~%*)m2, but more magic (a new symmetry?) is needed to suppress |
cosmological constant to the required level

A S1071%8md. (280)
This is one of the motivations for seeking a fundamental ThebEverything including gravity.

Once upon a time, supergravity was considered a possibtiidzda for such a Theory of Every-
thing, particularly the maximal = 8 supergravity in 4 dimensions. However, this candidatureldo
need two elements that are still lacking: a proof that thehés finite, or at least renormalizable, and &
demonstration of how it could lead to a low-energy theorgnasling the SM, e.gyia the formation of
bound states: see Ref. [137] for a review of these issuefielmeantime, string theory [90] is the most
plausible candidate for a Theory of Everything.

4.3 Towards a Theory of Everything
4.3.1 Problems in quantum gravity

One of the most important unfinished tasks for understanttingJniverse and the fundamental inter-
actions is the unification of the two great theories of thehZ#ntury: general relativity and quantum
mechanics. To write such a unified Theory of Everything is ointhe major challenges for physicists in
our century. The solution of the problem of the cosmologamaistant, for example, will have to find a
place in the frame of such a Theory of Everything.

Gravity is a puzzle for conventional quantum theory, in ipatar because incontrollable, non-
renormalizable infinities appear when one tries to caleufynman diagrams that contain loops witt
gravitons. These correction terms diverge increasinglidig as the order of the perturbative calculation
increases, essentially because the coupling of gravityégative mass dimensionality, beisgl /M2,
whereMp ~ 1.2 x 10 GeV.

There are also non-perturbative problems in the quantizasf gravity, which first appeared in
connection with black holes. We recall that a black hole ima-perturbative solution of the equations
of General Relativity, in which the curvature of space-timduced by gravitational forces becomes
S0 strong that no particle can escape the event horizon. Xiktrce of this horizon is linked to the
existence of entropy and a non-zero temperaturéof the black hole. From the pioneering work of
Bekenstein and Hawking [138] on black-hole thermodynamiasknow that the mass of a black hole is
proportional to the surface arehof its horizon, which is related in turn to its entropy:

S :%A. (281)

The appearance of non-zero entropy means that the quantseripdien of a black hole must involve
mixed states. The intuition underlying this feature is timibrmation can be lost through the event
horizon. To see how this may happen, consider, for examppjra quantum-mechanical pair state
|A, B) = ), c;|A;)|B;) prepared near the horizon, and what happens if one of thilpartsayA,
falls through the horizon whilé3 escapes, as seen in Fig. 31. In this case, all the informabont the
componentA;) of the wave function is lost, so that

> aldiBi) = > || BBy (282)

7
and B emerges in a mixed state, as in Hawking'’s original treatroétite black-hole radiation that bears
his name [138]. The problem is that conventional quantumhaueics does not permit the evolution of a
pure initial state into a mixed final state.
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|A|>/v
2¢ > xlc|*B><|
| |B|> | !

4

Fig. 31: If a pair of particlegA) | B) is produced near the horizon of a black hole, and one of thdin $ay) falls
in, the remaining particl&B) will appear to be in a mixed state, since the statp4fis unobservable

For a discussion of these and other open problems in quariask bhole physics, see Ref. [139].
Many theorists consider that these problems point to a fmeddal conflict between the proudest achieve
ments of early-twentieth-century physics, namely quanmugchanics and General Relativity. One or the
other should be modified, and perhaps both. Since quanturhanes is sacred to field theorists, most
particle physicists prefer to modify General Relativityddgvating it to string theory, as we now discuss

4.3.2 Introduction to string theory

As was just mentioned, one of the major issues of quantunitgr@vthat it has an infinite number of

infinities. These divergences can be traced to the absercshafrt-distance cut-off in conventional field
theories, where the particles are points. The problem tsotiecan in principle approach infinitely near
a point particle, giving rise to interactions of infiniteestgth:

A—o0 1 1
/ d'k <—2) < / d'z (—6> ~ A* = oo, (283)
k 1/A=0 x

Such divergences can be avoided or removed if one repladespaoticles by extended objects. The
simplest possibility is to extend in just one dimensiondieg to a theory of strings. In such a the-
ory, instead of point particles moving along one-dimenaliamorld lines, one has strings moving over
two-dimensional world sheets. Historically, closed logpstring have been the most popular, and thi
corresponding world sheet would be tubes. The ‘wiring diatg’ generated by the Feynman rules o
conventional point-like particle theories become ‘plungbcircuits’ generated by the junctions and con-
nections of these tubes of closed string. One could imaginermlizing this idea to higher-dimensional
extended objects such as membranes describing world ve|wete, and we return later to this option.

Back in the early 1960s, there existed a quantum theory ofletromagnetic force (QED), but
successful descriptions of the weak and strong forces watrgrat known. At that time, theoretical
efforts were concentrated on developing a theory that wdatdrmine the scattering’Y matrix, which
describes on-mass-shell scattering amplitudes, whichldhpmssess certain properties abstracted frol
quantum field theory, such as unitarity and maximal analgtaperties. These characteristics woulc
ensure the requirements of causality and non-negativeapilities. A key idea in those years was
maximal analyticity in the angular momentum plane, i.eat the conventional partial-wave amplitudes
a;(s) defined in the first instance for discrete angular moméntao0, 1, ..., can be extended uniquely
to analytic functions of, a(l, s). These have isolated ‘Regge’ poles that move along Regpetvdes
[ = «(s) in the complex angular-momentum plane. The values foir which [ take suitable discrete
values correspond to a physical hadron states. Experiinestats indicated that the Regge trajectorie:
are approximately linear, with a common slape

a(s) = a(0) + o's, (284)
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wherea’ ~ 1.0(GeV) 2. These ideas were insufficient to determine $hmatrix, and additional prin-

ciples were invoked, such as theotstrapidea, according to which the exchanges of hadrons in cross
channels provide forces that are responsible for formirmydrac bound states. In the narrow-resonanc
approximation, i.e., if resonance decay widths are ndgégtompared to their masses, the scatterin
amplitude can be expanded in an infinite series-ohannel poles, and this should give the same reslt
as its expansion in an infinite seriestedhannel poles due to exchanged particles. The narromaese

version of the bootstrap idea, which was called duality, acecise formulation with a definite solution.

The decisive contribution to the solution was made by Veareziin 1968 [140]: he gave an an-
alytic formula that exhibited duality with linear Reggejéetories. Its structure was the sum of three
Euler beta functions [141]:

- _ T(=a(s))l(=a(®))

T = A(s,t) + A(s,u) + A(t,u) - A(s,t) T(—a(s) —a@) | (285)
wherea is a linear Regge trajectory, with(s) = «(0) + «'s as described above. In the course of the
next few years, several further breakthroughs were acthieVeasoro [142] showed how to generalize
the Veneziano formula to one with full symmetry in the threardelstam invariants, ¢, u. Multi-
particle generalizations of the Veneziano and Virasormfdas were constructed and shown to factoriz
consistently on a finite spectrum of single-particle statesach energy level, which could be describe
by an infinite number of simple harmonic oscillators. Thispsising result led to the first ideas of
strings [143]: they could be interpreted as the scatterinden of a relativistic string: open strings in the
Veneziano case and closed strings in the Virasoro €ase

While looking for a way to incorporate baryons into the sirfrmmework, in 1971 Ramond [75]
constructed a dual-resonance model generalization of ttee [2quation. The solutions of this equa-
tion gave the spectrum of a noninteracting fermionic strihgcombination with work by Neveu and
Schwarz [76], this led to a unified interacting theory of besand fermions, which was essentially &
prototype for what later came to be known as superstringryhe®he action of this theory has two-
dimensional global supersymmetry on the world-sheet,rdest by infinitesimal fermionic transforma-
tions of the type discussed in the previous Lecture.

Initially, it was regarded as a disadvantage that this firsination of string theory was not able to
accommodate the point-like partons seen inside hadrohssdirne. In retrospect, this was the converse
of the quantum-gravity motivation for string theory menta at the beginning of this section, which dis-
favours point-like structures. Then in 1973 along came QCixkvincorporated these point-like scaling
properties and provided a qualitative understanding oficement that has now become quantitative
with the advent of modern lattice calculations. Thus stthmpry languished as a candidate model of th
strong interactions, though there is still hope that somgetiandiscovered variant of string theory might
provide a useful alternative description of the strongraatéons. In the mean time, interest was sparke
in 1973 by the realization that string theory predicted thistence of a massless spin-2 state [144]
Could this be the graviton? It was known that in any consistieeory of a massless spin-2 particle
its low-energy interactions would be identical with thogegeneral relativity. Might string theory be
a consistent high-energy completion of this theory, in Wtgdase it might be the longsought Theory of
Everything?

As already mentioned, one of the primary reasons for stgdgkxtended objects in connection
with quantum gravity is the softening of divergences asgedi with short-distance behaviour. Since
the string propagates on a world sheet, the basic formakstwa-dimensional. Accordingly, string
vibrations may be described in terms of left- and right-mgwvaves:

¢(r,t) = ¢L(r — 1), dr(r +1). (286)

2t still seems amazing that the mathematical formulae miedé¢he string interpretation [141].
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If the string has no boundary, as for a closed string, the #&ftl right-movers are independent. Wher
gquantized, they may be described by a two-dimensional freddriy. Compared to a four-dimensional
theory, it is relatively easy to make a two-dimensional fitbldroy finite. In this case, it has conformal
symmetry, which has an infinite-dimensional symmetry groupwo dimensions. However, as you
already know from gauge theories, one must be careful torerbat this classical symmetry is not
broken at the quantum level by anomalies. If the quantunmgstifieory is to be consistent in a flat
background space-time, the conformal anomaly fixes the eurbleft- and right-movers each to be
equivalent to 26 free bosons if the theory has no supersymnoet10 boson/fermion supermultiplets if
the theory hagv = 1 supersymmetry on the world sheet. There are other impagtaaritum consistency

conditions, and it was the demonstration by Green and Sehj4d5] that certain string theories are
completely anomaly-free that opened the floodgates of étieal interest in string theory as a potential
Theory of Everything.

Among consistent string theories, one may enumerate th@aviolg. Thebosonic stringexists
in 26 dimensions, but this is not even its worst problem! Ihtains no fermionic matter degrees of
freedom, and the flat-space vacuum is intrinsically unsta®Bluperstringsexist in 10 dimensions, have
fermionic matter and also a stable flat-space vacuum. Onttiex dand, the ten-dimensional theory
is left-right symmetric, and the incorporation of parityoldtion in four dimensions is not trivial. The
heterotic stringwas originally formulated in 10 dimensions, with parity kition already incorporated,
since the left- and right movers were treated differentlizisTtheory also has a stable vacuum, but stil
suffers from the disadvantage of having too many dimensiéoar-dimensional heterotic stringsay
be obtained either by compactifying the six surplus dimamsil0 = 4 + 6 compact dimensions with
sizeR ~ 1/mp, or by direct construction in four dimensions, replacing thissing dimensions by other
internal degrees of freedom such as fermions or group nidaifar ...? In this way it was possible to
incorporate a GUT-like gauge group [122] or even somethirsgmbling the Standard Model.

What are the general features of such string models? Huey, gredict there are no more than
10 dimensions, which agrees with the observed number of 4orsity, they suggest that the rank
of the four-dimensional gauge group should not be very laigeagreement with the rank 4 of the
Standard Modef®. Thirdly, the simplest four-dimensional string models dii accommodate large
matter representations [146], such asBarf SU(3) or a3 of SU(2), again in agreement with the known
representation structure of the Standard Model. Foursitlyple string models predict fairly successfully
the mass of the top quark, from the requirement that the ylreake sense at all energies up to the Planc
mass. Fifthly, string theory makes a fairly successful jotémh for the gauge unification scale in terms
of mp. If the intrinsic string couplingys is weak, one predicts

Mgyt = O(g) x m—; ~ few x 10'7GeV, (287)
Y
whereg is the gauge coupling, which ©(20) higher than the value calculated on the basis of LE
measurement of the gauge couplings. Nevertheless, it wmildice to obtain closer agreement, anc
this provides the major motivation for considering strgnrgbupled string theory, which corresponds tc
alarge internal dimensioh> mg,,, as we discuss next.

4.3.3 Mtheory

As was already said, the bosonic string model has many meagldantages than other models. It has 2
dimensions, does not contain fermions, and has an unstabileiin. Consequently, physicists focusec
on superstring models, of which five types exist:

e Type lIA, that reduces at low energy to a non-chifal= 2 supergravity ind = 10 dimensions;
e Type IIB, that reduces at low energy to a chifdl= 2 supergravity ind = 10 dimensions;

2However, the number of gauge symmetries may be enhancednbyerturbative effects.
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e The heteroticE(8) x E(8) theory, that reduces at low energy to/fn= 1 supergravity ini = 10,
connected to a Yang—Mills gauge theory with/&(8) x F(8) gauge group;

e The heterotic theonfO(32), that reduces at low energy to & = 1 supergravity ind = 10,
connected to a Yang—Mills gauge theory with.$0(32) gauge group;

e Type I, that contains simultaneously opened and closedgstrand that reduces at low energy tc
an N = 1 supergravity ind = 10 connected to a Yang—Mills gauge theory with&0(32) gauge

group.

These theories all look different. For example, the Typeebtly is the only one that contains
simultaneously open and closed strings, whereas the athatain only closed strings. In addition, the
low-energy gauge structures of the five theories are diitertt seems then, that we have five distinci
theories that may describe gravity at the quantum level. Rhay we understand this? Is it possible tha
there is a link between the different theories?

Current developments involve going beyond strings to amrshigher-dimensional extended ob-
jects, such as generalized membranes with various numbéngemal dimensions. These can be re-
garded as solitons (non-perturbative classical solutiohstring theory [147], with masses

1
mo —, (288)
Gs
somewhat analogously to monopoles in gauge theory. It geatifrom (288) that such membrane-
solitons become light in the limit of strong string coupling — oo.

It was observed some time ago that there should be a stramgiog/weak-coupling duality be-
tween elementary excitations and monopoles in supersyritngetuge theories. These ideas were cor
firmed in a spectacular solution & = 2 supersymmetric gauge theory in four dimensions [148
Similarly, it was shown that there are analogous dualitrestiing theory [149], whereby solitons in
some strongly-coupled string theory are equivalent totlgihing states in some other weakly-couplec
string theory. Indeed, it appears that all string theories@lated by such dualities. A peculiarity of this
discovery is that the string coupling strengthis related to an extra dimension in such a way that it
size R — oo asgs — oo. This then leads to the idea of an underlying 11-dimensitmaahework called
M theory [71] that reduces to the different string theoriegdlifferent strong/weak-coupling linits, and
reduces to eleven-dimensional supergravity in the lowggnkmit (see Fig. 32).

A particular class of string solitons called-branes offers a promising approach to the blac
hole information paradox mentioned previously. Accordinghis picture, black holes are viewed as
solitonic balls of string, and their entropy simply courtie humber of internal string states. These ar
in principle countable, so string theory may provide an aotiog system for the information contained
in black holes. Within this framework, the previously pavgidal process (282) becomes

|A,B) + |BH) — |B') + |BH') (289)

and the final state is pure if the initial state was. The appagstropy of the final state in (282) is now
interpreted as entanglement with the state of the black hbke ‘lost’ information is encoded in the

black-hole state, and this information could in principtedxtracted if we measured all properties of this
ball of string [150].

In practice, we do not know how to recover this informatioonfr macroscopic black holes, so
they appear to us as mixed states. What about microscopik blales, namely fluctuations in the
space-time background withE = O(mp), that last for a period\t = O(1/mp) and have a size
Az = O(1/mp)? Do these steal information from us, or do they give it backgavhen they decay?
Most people think there is no microscopic leakage of infdfamain this way, but not all of us [151]
are convinced. The neutral kaon system is among the mostigerexperimental areas for testing this
speculative possibility.
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Fig. 32: The different limits of theM/ theory are joined by different duality relations. The numsti& and32 are
the numbers of spinor components in the theory.

How large might the extra dimension be/ii theory? Remember that the naive string unificatiol
scale (287) is about 20 times larger tham;yr as inferred from LEP data. If one wants to maintair
consistency of LEP data with supersymmetric GUTS, it sedisthe extra dimension may be relatively
large, with sizeL; > 1/mgyr ~ 1/10'6 GeV > 1/mp [152]. This may be traced to the fact that the
gravitational interaction strength, although growingidfpas a power of energy

oG ~ B2 /m}, (290)

is still much smaller than the gauge coupling strengtivat mqgyr. However, if an extra space-time
dimension appears at an enetfy< mqgyr, the gravitational interaction strength grows faster,na-i
cated in Fig. 33. Unification with gravity aroun@'® GeV then becomes possiblethe gauge couplings
do not also acquire a similar higher-dimensional kick. Tiuwesare led to the startling capacitor-plate
framework for fundamental physics shown in Fig. 34.

Each capacitor plate ia priori ten-dimensional, and the bulk space between them fsiori
eleven-dimensional. Six dimensions are compactified ok &g ~ 1/mqyr, leaving a theory which
is effectively five-dimensional in the bulk and four-dimamsal on the walls. Conventional gauge in-
teractions and observable matter particles are hypotibszlive on one capacitor plate, and there ar
other hidden gauge interactions and matter particlesgieim the other plate. The fifth dimension has ¢
characteristic size which is estimated to®€10'2 to 10'* GeV)~!. Physics at smaller energies (large
distances) looks effectively four-dimensional, wheregs/igational physics at larger energies (smalle
distances) looks five-dimensional, and the strength of theitgtional coupling rises rapidly to unify
with the gauge couplings. Supersymmetry breaking is explett originate on the hidden capacitor
plate in this scenario, and to be transmitted to the obsérwahll by gravitational-strength interactions
in the bulk.

The phenomenological richness of this speculafiveheory approach is only beginning to be
explored, and it remains to be seen whether it offers a tiatisenomenological description. However,
it does embody all the available theoretical wisdom as welbféering the prospect of unifying all the
observable gauge interactions with gravity at a singlectffe scale~ mgyr, including the interac-
tions of the Standard Model. As such, it constitutes our bestemporary guess about the Theory o
Everything within and beyond the Standard Model.
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Mp

Fig. 33: Sketch of the possible evolution of the gauge couplings aedgtavitational coupling-: if there is a

large fifth dimension with size> ma}JT, G may be unified with the gauge couplings at the GUT scale [152]
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Fig. 34: The capacitor-plate scenario favoured in eleven-dimerdib/ theory. The eleventh dimension has a
sizeLi; > MC;}]T, whereas dimensioris ..., 10 are compactified on a small manifald with characteristic size
~ Mg;éT. The remaining four dimensions form (approximately) a flankdwski spaceVl, [152].

4.4 Extra dimensions

We have seen that string theories suggest that there maytiseumseen dimensions of space, but thi
speculation did not originate with string theorists. Theadf extra dimensions was first developec
by Kaluza [69] and Klein [70]. They noticed that gravitat&drand electromagnetic interactions, being
so alike in many ways, could be descendants of a common ancéstleed, if we formulate a theory
with extra spatial dimensions, it is possible to unify gtawand electromagnetism. In the same way
non-Abelian gauge fields can be unified with Einstein’s dyawi more complicated models with extra
dimensions. Thus, the first reason why extra dimensions stadked was to unify the gravitational and
gauge interactions. These initial discussions concermadtgtion at the classical level. If you want
to quantize gravity, you would be well advised to look at tlestbavailable candidate, namely string ol
M-theory, which, as we have seen, can be formulated congligti|n a space with six or seven extra
dimensions. From this point of view, the quantization ofvifetional interactions becomes a seconc
reason for extra dimensions.

220



BEYOND THE STANDARD MODEL FOR MONTANEROS

In all the scenarios considered above, the extra dimensiens very small, close to the Planck
size or perhaps somewhat larger, but undetectable in c@ideiexperiments.

However, it was suggested by Antoniadis [153] that an eximeedsion might be a good way to
break supersymmetry, in which case its size woulc~bé/ TeV, in which case it might have some
observable manifestations at the LHC.

Another suggestion, discussed in Lecture 2, was the ptigsithiat boundary conditions in an
extra dimension might be used to break the electroweak gsymenetry. In this case also, the size of
the extra dimension should be1/ TeV, and potentially detectable at the LHC [66—68].

Arkani-Hamed, Dimopoulos and Dvali (ADD) [154] went eventher, observing that the Higgs
mass hierarchy problem might be addressed in models wigfe lextra dimensions, if they were of a
millimetre or micron in size. Because the extra dimensiarssa large in the ADD framework, their
effects might be measurable even in low-energy table-tperxments. These models can be embedde
in string theory framework, as discussed in Ref. [155]. Thainmingredients of the simplest ADD
scenario are [156]:

e The particles of the SM live on a 3-brane, while gravity sgeetn all 4+N dimensions;

e There is a new fundamental scale of gravity in extra dimessid/,, which together with the
ultraviolet completion scale of the SM is around a few TeVarthus eliminating the Higgs mass
hierarchy problem;

e N extra dimensions are compactified.

If we define in this context the 4-dimensional Planck mass
M3y = MZN 2r L)Y, (291)

and postulate that the quantum gravity sdale ~ TeV, we can estimate the size of the extra dimensior
to be
L~ 1071739/ Nem (292)

For one extra dimensiody = 1, we obtainL ~ 103 cm, which is excluded within the ADD framework,
because gravity would have become higher-dimensionaktdriies~ 10'3 cm. On the other hand, for
N = 2 we getL ~ 1072 cm. This case is very interesting, because it predicts afioation of the
4-dimensional laws of gravity at submillimeter distanceswhich has become the subject of active
experimental studies [156]. For larght, the value ofZ should decrease but, even fr= 6, L is very
large compared to/Mp.

Randall and Sundrum (RS) went much further still [157], simgthat a model with amnfinite
warped extra dimension could provide an attractive way forneulate the hierarchy problem. In this
scenario, 4-dimensional gravity on a brane is obtainedutittaghe phenomenon of localization of gravity.
The brane is embedded in a 5-dimension bulk space with negatismological constant. In this case
we find a relation between the 4-dimensional Planck massiand

M3, = M3 (2L). (293)

This is similar to the relation between the fundamentalesgd), the sizeL of the extra dimension, and
the Planck masa/p in the ADD model with one extra dimension (291). This similars based on the
fact that in both theories the effective size of the extraatision that is felt by the zero-mode graviton is
finite and~ L.

So, are extra dimensions very small, small, large or infigitel how do we tell? There are severa
ways to search for extra dimensions in experiments at thestalé at the LHC.

Typical examples in theories with TeV-scale extra dimemsiare the appearance of Kaluza—Kleir
excitations, corresponding to particle wave functiong tinap themselves around the extra dimensior
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These show up as resonances that can appear in cross satspssific energies related to the compact
ification scale. These Kaluza—Klein excitations occur@vérs’ that can be understood by analogy witt
a quantum-mechanical particle in a potential well. Its gnés quantized due to the boundary conditions
at the walls of the well. In our case, the supplementary dgizenplays the role of the wall of the well.

In models with very large extra dimensions, there are marny#ée-Klein excitations of the gravi-
ton, which may be detectablga missing-energy events.

Another speculative possibility is the creation of a micagsc black hole [158]. Any concentra-
tion of energy or mass: will be transformed into a black hole if it is squeezed beltsvSchwarzschild
radius: G/m. The larger the mass, the easier it can be squeezed beloshitga& schild radius. More-
over, as we have seen, extra dimensions can increase theofadti Hence, if there are a few extra
dimensions of sufficient size, it is conceivable that callis in the LHC might squeeze a pair of partons
below their combined Schwarzschild radius, and hence emanicroscopic black hole. These shoulc
evaporate rapidly, since Hawking radiation implies that lttack hole loses energy at a rate inversel
proportional to its mass. Studies performed by the CMS [2&] ATLAS [29] collaborations have
demonstrated that such Hawking radiation would be visiblthe LHCvia energetic jets, leptons and
photons, as well as missing energy carried away by neutriBes Fig. 35 for some results for simulatec
black hole production at the LHC [159].
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Fig. 35: Left: a comparison of the missing transverse momentum gpéetthe SM, in a typical supersymmetric
model, and in two black hole scenarios, and right: the regfla fit to the number of extra dimensionsand
the higher-dimensional Planck makk-;, on the basis of simulated black hole production at the LHK:ndrom
Ref. [159].

4.5 And now for something completely different?

In 1982, Prime Minister Thatcher of the United Kingdom \sitCERN: | was placed in the receiving
line, and introduced as a theoretical physicist. “So whathaémretical physicistdo?” she boomed. |
replied that “We think of things for the experimentalistsldok for, and we hope they find something
different”. Mrs Thatcher was not sure about this, and ask&duidn't it be better if they found what you
had predicted?” My response was that “In that case, we waatldelearning anything new.” In the same
spirit, let us hope that new experiments, particularly atithiC, will soon reveal new physics beyond
the Standard Model. Perhaps it will look something like thegibilities discussed in these Lectures, bu
let us hope that it will take us beyond the beyonds imaginethégrists.
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