2,198 research outputs found
Controlling small hive beetles, Aethina tumida, in western honey bee (Apis mellifera) colonies by trapping wandering beetle larvae
The small hive beetle (SHB, Aethina tumida) is an invasive honey bee pest. It has been introduced into many countries worldwide and it will continue to spread. The lifecycle of the SHB is divided between a feeding and reproduction phase inside honey bee colonies and a pupation phase in the soil, surrounding colonies. Once larvae have achieved their ideal weight, they leave the hive in search of suitable soil in which to pupate. Trapping larvae when they leave the hive could reduce the reproductive success of SHBs, as this would break their lifecycle. Therefore, we investigated the larvae containment rate of different trap designs. Dry and wet larvae were released into traps and left to wander for 12 h, after which we counted the larvae remaining in the trap. Similarly, we tested the permeability of different mesh sizes for dry and wet larvae. Finally, we investigated the speed dry larvae are capable of crawling, by recording the time it took them to crawl a known distance. Dry larvae were contained by all traps. While most designs were unable to contain wet larvae, a trap with walls of sandpaper was able to contain all larvae successfully. Larvae could not pass through a mesh size of 1 mm in dry or wet conditions. The mean wandering larvae speed observed was 0.42 cm/sc. We recommend the use of traps for wandering SHB larvae as a mitigative measure for new introductions and a control method for established populations.</p
Serologic and Hematologic Values of Bison in Colorado
Recent economic and aesthetic interest in North American bison (Bison bison) has lead to increased interstate transport of these animals. Serologic and hematologic standards for bison are needed to detect disease in transported animals as well as within herds. This paper describes variation in blood physiological parameters in bison caused by variations in diet and season. Blood was taken from six bison and analyzed for serologic and hematologic parameters. Significant variation was found in blood urea nitrogen, chloride, cholesterol, creatinine, eosinophil, glucose, hemoglobin, lactic dehydrogenase, leukocyte, packed cell volume, potassium, serum globulin, serum glutamic oxalacetic transaminase, SGPT, and sodium levels between animals receiving a high energy-high nitrogen diet and animals receiving a low energy-low nitrogen diet
NEQAIR96,Nonequilibrium and Equilibrium Radiative Transport and Spectra Program: User's Manual
This document is the User's Manual for a new version of the NEQAIR computer program, NEQAIR96. The program is a line-by-line and a line-of-sight code. It calculates the emission and absorption spectra for atomic and diatomic molecules and the transport of radiation through a nonuniform gas mixture to a surface. The program has been rewritten to make it easy to use, run faster, and include many run-time options that tailor a calculation to the user's requirements. The accuracy and capability have also been improved by including the rotational Hamiltonian matrix formalism for calculating rotational energy levels and Hoenl-London factors for dipole and spin-allowed singlet, doublet, triplet, and quartet transitions. Three sample cases are also included to help the user become familiar with the steps taken to produce a spectrum. A new user interface is included that uses check location, to select run-time options and to enter selected run data, making NEQAIR96 easier to use than the older versions of the code. The ease of its use and the speed of its algorithms make NEQAIR96 a valuable educational code as well as a practical spectroscopic prediction and diagnostic code
Urban mapping in Dar es Salaam using AJIVE
Mapping deprivation in urban areas is important, for example for identifying
areas of greatest need and planning interventions. Traditional ways of
obtaining deprivation estimates are based on either census or household survey
data, which in many areas is unavailable or difficult to collect. However,
there has been a huge rise in the amount of new, non-traditional forms of data,
such as satellite imagery and cell-phone call-record data, which may contain
information useful for identifying deprivation. We use Angle-Based Joint and
Individual Variation Explained (AJIVE) to jointly model satellite imagery data,
cell-phone data, and survey data for the city of Dar es Salaam, Tanzania. We
first identify interpretable low-dimensional structure from the imagery and
cell-phone data, and find that we can use these to identify deprivation. We
then consider what is gained from further incorporating the more traditional
and costly survey data. We also introduce a scalar measure of deprivation as a
response variable to be predicted, and consider various approaches to multiview
regression, including using AJIVE scores as predictors.Comment: 34 pages, 25 figure
Using the local density approximation and the LYP, BLYP, and B3LYP functionals within Reference--State One--Particle Density--Matrix Theory
For closed-shell systems, the local density approximation (LDA) and the LYP,
BLYP, and B3LYP functionals are shown to be compatible with reference-state
one-particle density-matrix theory, where this recently introduced formalism is
based on Brueckner-orbital theory and an energy functional that includes exact
exchange and a non-universal correlation-energy functional. The method is
demonstrated to reduce to a density functional theory when the
exchange-correlation energy-functional has a simplified form, i.e., its
integrand contains only the coordinates of two electron, say r1 and r2, and it
has a Dirac delta function -- delta(r1 - r2) -- as a factor. Since Brueckner
and Hartree--Fock orbitals are often very similar, any local exchange
functional that works well with Hartree--Fock theory is a reasonable
approximation with reference-state one-particle density-matrix theory. The LDA
approximation is also a reasonable approximation. However, the Colle--Salvetti
correlation-energy functional, and the LYP variant, are not ideal for the
method, since these are universal functionals. Nevertheless, they appear to
provide reasonable approximations. The B3LYP functional is derived using a
linear combination of two functionals: One is the BLYP functional; the other
uses exact exchange and a correlation-energy functional from the LDA.Comment: 26 Pages, 0 figures, RevTeX 4, Submitted to Mol. Phy
A Two-Tiered Correlation of Dark Matter with Missing Transverse Energy: Reconstructing the Lightest Supersymmetric Particle Mass at the LHC
We suggest that non-trivial correlations between the dark matter particle
mass and collider based probes of missing transverse energy H_T^miss may
facilitate a two tiered approach to the initial discovery of supersymmetry and
the subsequent reconstruction of the LSP mass at the LHC. These correlations
are demonstrated via extensive Monte Carlo simulation of seventeen benchmark
models, each sampled at five distinct LHC center-of-mass beam energies,
spanning the parameter space of No-Scale F-SU(5).This construction is defined
in turn by the union of the Flipped SU(5) Grand Unified Theory, two pairs of
hypothetical TeV scale vector-like supersymmetric multiplets with origins in
F-theory, and the dynamically established boundary conditions of No-Scale
Supergravity. In addition, we consider a control sample comprised of a standard
minimal Supergravity benchmark point. Led by a striking similarity between the
H_T^miss distribution and the familiar power spectrum of a black body radiator
at various temperatures, we implement a broad empirical fit of our simulation
against a Poisson distribution ansatz. We advance the resulting fit as a
theoretical blueprint for deducing the mass of the LSP, utilizing only the
missing transverse energy in a statistical sampling of >= 9 jet events.
Cumulative uncertainties central to the method subsist at a satisfactory 12-15%
level. The fact that supersymmetric particle spectrum of No-Scale F-SU(5) has
thrived the withering onslaught of early LHC data that is steadily decimating
the Constrained Minimal Supersymmetric Standard Model and minimal Supergravity
parameter spaces is a prime motivation for augmenting more conventional LSP
search methodologies with the presently proposed alternative.Comment: JHEP version, 17 pages, 9 Figures, 2 Table
A consensus prognostic gene expression classifier for ER positive breast cancer.
BACKGROUND: A consensus prognostic gene expression classifier is still elusive in heterogeneous diseases such as breast cancer. RESULTS: Here we perform a combined analysis of three major breast cancer microarray data sets to hone in on a universally valid prognostic molecular classifier in estrogen receptor (ER) positive tumors. Using a recently developed robust measure of prognostic separation, we further validate the prognostic classifier in three external independent cohorts, confirming the validity of our molecular classifier in a total of 877 ER positive samples. Furthermore, we find that molecular classifiers may not outperform classical prognostic indices but that they can be used in hybrid molecular-pathological classification schemes to improve prognostic separation. CONCLUSION: The prognostic molecular classifier presented here is the first to be valid in over 877 ER positive breast cancer samples and across three different microarray platforms. Larger multi-institutional studies will be needed to fully determine the added prognostic value of molecular classifiers when combined with standard prognostic factors
Testing the Nambu-Goldstone Hypothesis for Quarks and Leptons at the LHC
The hierarchy of the Yukawa couplings is an outstanding problem of the
standard model. We present a class of models in which the first and second
generation fermions are SUSY partners of pseudo-Nambu-Goldstone bosons that
parameterize a non-compact Kahler manifold, explaining the small values of
these fermion masses relative to those of the third generation. We also provide
an example of such a model. We find that various regions of the parameter space
in this scenario can give the correct dark matter abundance, and that nearly
all of these regions evade other phenomenological constraints. We show that for
gluino mass ~700 GeV, model points from these regions can be easily
distinguished from other mSUGRA points at the LHC with only 7 fb^(-1) of
integrated luminosity at 14 TeV. The most striking signatures are a dearth of
b- and tau-jets, a great number of multi-lepton events, and either an
"inverted" slepton mass hierarchy, narrowed slepton mass hierarchy, or
characteristic small-mu spectrum.Comment: Corresponds to published versio
Challenges of Profile Likelihood Evaluation in Multi-Dimensional SUSY Scans
Statistical inference of the fundamental parameters of supersymmetric
theories is a challenging and active endeavor. Several sophisticated algorithms
have been employed to this end. While Markov-Chain Monte Carlo (MCMC) and
nested sampling techniques are geared towards Bayesian inference, they have
also been used to estimate frequentist confidence intervals based on the
profile likelihood ratio. We investigate the performance and appropriate
configuration of MultiNest, a nested sampling based algorithm, when used for
profile likelihood-based analyses both on toy models and on the parameter space
of the Constrained MSSM. We find that while the standard configuration is
appropriate for an accurate reconstruction of the Bayesian posterior, the
profile likelihood is poorly approximated. We identify a more appropriate
MultiNest configuration for profile likelihood analyses, which gives an
excellent exploration of the profile likelihood (albeit at a larger
computational cost), including the identification of the global maximum
likelihood value. We conclude that with the appropriate configuration MultiNest
is a suitable tool for profile likelihood studies, indicating previous claims
to the contrary are not well founded.Comment: 21 pages, 9 figures, 1 table; minor changes following referee report.
Matches version accepted by JHE
- …