36,410 research outputs found

    Quantum Decoherence in a D-Foam Background

    Get PDF
    Within the general framework of Liouville string theory, we construct a model for quantum D-brane fluctuations in the space-time background through which light closed-string states propagate. The model is based on monopole and vortex defects on the world sheet, which have been discussed previously in a treatment of 1+1-dimensional black-hole fluctuations in the space-time background, and makes use of a T-duality transformation to relate formulations with Neumann and Dirichlet boundary conditions. In accordance with previous general arguments, we derive an open quantum-mechanical description of this D-brane foam which embodies momentum and energy conservation and small mean energy fluctuations. Quantum decoherence effects appear at a rate consistent with previous estimates.Comment: 16 pages, Latex, two eps figures include

    CP-Violating MSSM Higgs Bosons in the Light of LEP 2

    Get PDF
    In the MSSM, the CP parities of the neutral Higgs bosons may be mixed by radiative effects induced by explicit CP violation in the third generation of squarks. To allow for this possibility, we argue that the charged Higgs-boson mass and tan(beta) should be used to parametrize the MSSM Higgs sector. We introduce a new benchmark scenario of maximal CP violation appropriate for direct searches of CP-violating MSSM Higgs bosons. We show that the bounds established by LEP 2 on the MSSM Higgs sector may be substantially relaxed at low and intermediate values of tan(beta) in the presence of CP violation, and comment on possible Higgs boson signatures at LEP 2 within this framework.Comment: 16 pages, LaTeX, 4 encapsulated figure

    Neutrino Masses, Mixing Angles and the Unification of Couplings in the MSSM

    Get PDF
    In the light of the gathering evidence for ΜΌ−Μτ\nu_{\mu}-\nu_{\tau} neutrino oscillations, coming in particular from the Super-Kamiokande data on atmospheric neutrinos, we re-analyze the unification of gauge and Yukawa couplings within the minimal supersymmetric extension of the Standard Model (MSSM). Guided by a range of different grand-unified models, we stress the relevance of large mixing in the lepton sector for the question of bottom-tau Yukawa coupling unification. We also discuss the dependence of the favoured value of tan⁥ÎČ\tan\beta on the characteristics of the high-energy quark and lepton mass matrices. In particular, we find that, in the presence of large lepton mixing, Yukawa unification can be achieved for intermediate values of tan⁥ÎČ\tan\beta that were previously disfavoured. The renormalization-group sensitivity to the structures of different mass matrices may enable Yukawa unification to serve as a useful probe of GUT models.Comment: 29 pages, latex, 5 figure

    Renormalization-Group-Improved Effective Potential for the MSSM Higgs Sector with Explicit CP Violation

    Get PDF
    We perform a systematic study of the one-loop renormalization-group-improved effective potential of the minimal supersymmetric extension of the Standard Model (MSSM), including CP violation induced radiatively by soft trilinear interactions related to squarks of the third generation. We calculate the charged and neutral Higgs-boson masses and couplings, including the two-loop logarithmic corrections that arise from QCD effects, as well as those associated with the top- and bottom-quark Yukawa couplings. We also include the potentially large two-loop non-logarithmic corrections induced by one-loop threshold effects on the top- and bottom-quark Yukawa couplings, due to the decoupling of the third-generation squarks. Within this minimal CP-violating framework, the charged and neutral Higgs sectors become intimately related to one another and therefore require a unified treatment. In the limit of a large charged Higgs-boson mass, M_{H^+} >> M_Z, the lightest neutral Higgs boson resembles that in the Standard Model (SM), and CP violation occurs only in the heavy Higgs sector. Our analysis shows that sizeable radiative effects of CP violation in the Higgs sector of the MSSM may lead to significant modifications of previous studies for Higgs-boson searches at LEP2, the Tevatron and the LHC. In particular, CP violation could enable a relatively light Higgs boson to escape detection at LEP2.Comment: 55 pages, LaTeX, 9 eps figures, typo in (A.12) eliminate

    Properties of Information Carrying Waves in Cosmology

    Full text link
    Recently we studied the effects of information carrying waves propagating through isotropic cosmologies. By information carrying we mean that the waves have an arbitrary dependence on a function. We found that the waves introduce shear and anisotropic stress into the universe. We then constructed explicit examples of pure gravity wave perturbations for which the presence of this anisotropic stress is essential and the null hypersurfaces playing the role of the histories of the wave-fronts in the background space-time are shear-free. Motivated by this result we now prove that these two properties are true for all information carrying waves in isotropic cosmologies.Comment: 15 pages, Latex File, accepted for publication in Physical Review

    The Nimbus 7 LIMS (Limb Infrared Monitor of the Stratosphere) water vapor measurements

    Get PDF
    Earth orbital instruments, designed to measure the vertical and spatial distribution of atmospheric water vapor is discussed. Specifically, the operation of the Limb Infrared Monitor of the Stratosphere (LIMS) experiment is examined. The LIMS is a six channel limb scanning radiometer that was launched aboard Nimbus 7 in 1978. Profiles of stratospheric and mesospheric temperature, water vapor, and various other constituents were obtained by inverting the LIMS radiance measurements. This same technique was used in 1981 to analyze the data returned from another limb scanning radiometer aboard the Solar Mesosphere Explorer

    Prospects for Discovering Supersymmetry at the LHC

    Full text link
    Supersymmetry is one of the best-motivated candidates for physics beyond the Standard Model that might be discovered at the LHC. There are many reasons to expect that it may appear at the TeV scale, in particular because it provides a natural cold dark matter candidate. The apparent discrepancy between the experimental measurement of g_mu - 2 and the Standard model value calculated using low-energy e+ e- data favours relatively light sparticles accessible to the LHC. A global likelihood analysis including this, other electroweak precision observables and B-decay observables suggests that the LHC might be able to discover supersymmetry with 1/fb or less of integrated luminosity. The LHC should be able to discover supersymmetry via the classic missing-energy signature, or in alternative phenomenological scenarios. The prospects for discovering supersymmetry at the LHC look very good.Comment: 8 pages, 11 figure

    A supersymmetric D-brane Model of Space-Time Foam

    Full text link
    We present a supersymmetric model of space-time foam with two stacks of eight D8-branes with equal string tensions, separated by a single bulk dimension containing D0-brane particles that represent quantum fluctuations in the space-time foam. The ground state configuration with static D-branes has zero vacuum energy. However, gravitons and other closed-string states propagating through the bulk may interact with the D0-particles, causing them to recoil and the vacuum energy to become non zero. This provides a possible origin of dark energy. Recoil also distorts the background metric felt by energetic massless string states, which travel at less than the usual (low-energy) velocity of light. On the other hand, the propagation of chiral matter anchored on the D8 branes is not affected by such space-time foam effects.Comment: 33 pages, latex, five figure

    Do Three Dimensions tell us Anything about a Theory of Everything?

    Full text link
    It has been conjectured that four-dimensional N=8 supergravity may provide a suitable framework for a `Theory of Everything', if its composite SU(8) gauge fields become dynamical. We point out that supersymmetric three-dimensional coset field theories motivated by lattice models provide toy laboratories for aspects of this conjecture. They feature dynamical composite supermultiplets made of constituent holons and spinons. We show how these models may be extended to include N=1 and N=2 supersymmetry, enabling dynamical conjectures to be verified more rigorously. We point out some special features of these three-dimensional models, and mention open questions about their relevance to the dynamics of N=8 supergravity.Comment: 20 pages Latex, 2 eps figure
    • 

    corecore