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Abstract
Within the general framework of Liouville string theory, we construct a model for quan-
tum D-brane fluctuations in the space-time background through which light closed-string
states propagate. The model is based on monopole and vortex defects on the world sheet,
which have been discussed previously in a treatment of 1 + 1-dimensional black-hole fluc-
tuations in the space-time background, and makes use of a T -duality transformation to
relate formulations with Neumann and Dirichlet boundary conditions. In accordance with
previous general arguments, we derive an open quantum-mechanical description of this
D-brane foam which embodies momentum and energy conservation and small mean en-
ergy fluctuations. Quantum decoherence effects appear at a rate consistent with previous
estimates.
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Our objective in this paper is to set up a formalism suitable for describing the prop-
agation of a low-energy light particle, interpreted as a closed string state, through a
fluctuating quantum space-time background, for which we adapt and develop emergent
D-brane technology. The physical question towards which this study is directed is whether
conventional quantum mechanics can be maintained in the presence of such a space-time
foam. Hawking has argued [1] that a quantum state propagating through such a fluctu-
ating background inevitably decoheres in general, as a result of information loss through
Planck-scale event horizons. His arguments were based heuristically on model calculations
in a quantum treatment of a conventional field-theoretical gravity [1, 2]. We have made
similar arguments [3] and developed an appropriate open quantum-mechanical treatment
of the evolution of a microscopic system, using as a guide a (1 + 1)-dimensional string
black-hole model [4].

We argued that, whilst the Hawking-Bekenstein black-hole entropy was given by the
number of stringy black-hole microstates in (1+1) and presumably in (3+1) dimensions [5],
and these were in principle distinguishable, enabling quantum coherence to be maintained
at the full string level, in practice experiments do not measure all these microstates, and
hence entanglement entropy grows and effective quantum coherence is lost. Formally, we
argued that this physics could be represented by Liouville string [6, 7], with microscopic
black holes in the background space-time foam pushing the theory away from criticality,
leading to non-trivial dynamics for the Liouville field [3], which should be interpreted as
the time variable [3, 6, 8].

A more complete formalism for higher-dimensional black holes in string theory has
now been provided by D branes [9], whose quantum states give an exact microscopic
accounting for the black-hole entropy in higher dimensions, providing a laboratory for
the explicit extension of our previous arguments on quantum decoherence to the realistic
(3 + 1)-dimensional case. As a first step in this programme, we have demonstrated [10]
that quantum recoil effects in the scattering of a light closed-string state off a D brane
generate entanglement entropy in the light-particle system when one sums over the unseen
quantum excitations of the recoiling D brane.

The next step, undertaken in this paper, is the treatment of quantum D-brane fluctu-
ations in the space-time background, and the propagation of light-particle states through
this D-brane foam. To this end, we first recall relevant aspects of our (1 + 1)-dimensional
string black-hole analysis [3], discussing correlators in Liouville theory, and showing that
S-matrix elements are not in general well defined, whereas /S-matrix elements are. As
an analogue for this technical development, we make an explicit connection between our
Liouville formalism and the closed-time path (CTP) formalism [11] used in conventional
finite-density field theory. Next we show that the appearance and disappearance of virtual
D branes may be represented by monopole-antimonopole pairs on the world-sheet, as was
previously shown [3] to be the case in the (1 + 1)-dimensional string model. Monopole-

1



antimonopole pairs are connected by Dirac-string singularities which cut slits along the
world sheet, introducing open strings, which may be given Dirichlet boundary conditions.
This formalism provides an explicit realization of the Liouville-string approach, including
the departure from criticality and the resulting non-trivial Liouville dynamics, from which
we derive a time-evolution equation for the effective light-state density matrix that is rem-
iniscent of open quantum-mechanical systems and incorporates quantum decoherence.

To establish our basic framework, we first consider a generic conformal field theory
action S[g∗] perturbed by a non-conformal deformation

∫
d2zgiVi, whose couplings have

world-sheet renormalization-group β-functions βi = (hi− 2)(gi− g∗i) + cijk(g
j − g∗j)(gk−

g∗k) + . . ., where the cijk are operator product expansion (OPE) coefficients defined in the
normal way. Coupling this theory to two-dimensional quantum gravity restores conformal
invariance at the quantum level, by introducing the Liouville mode φ, which scales the
world-sheet metric γαβ = eϕγ̂αβ ≡ eφ/Qγ̂αβ, with Q to be defined below, and γ̂ a some
suitable fiducial metric, and makes the gravitationally-dressed operators [Vi]φ exactly
marginal. The corresponding gravitationally-dressed conformal theory is:

SL−m = S[g∗] +
1

4πα′

∫
d2z{∂αφ∂

αφ−QR(2) + λi(φ)Vi} (1)

where [7, 12]:

λi(φ) = gieαiφ +
π

Q± 2αi
cijkg

jgkφeαiφ + . . . ; αi = −
Q

2
+

√
Q2

4
− (hi − 2) (2)

We identify the Liouville field φ with a dynamical local scale on the world-sheet and
focus on the operators Vi that are (1, 1) but not exactly marginal, i.e. have hi = 2 but
cijk 6= 0. The couplings obey d

dτ
λi(φ) = βi, where τ = − 1

αQ
lnA : A ≡

∫
d2z
√
γ̂eαφ(z,z̄) is

the world-sheet area, and α = −Q
2

+ 1
2

√
Q2 + 8 with:

Q =

√
|25− C[g, φ]|

3gχs
+

1

2
βiGijβj (3)

Here C[g, φ] is the Zamolodchikov C function [13], which on account of the C theorem [13]
is given by:

C[g, φ] = c∗ − gχs

∫ φ

φ∗
dφ′βiGijβ

j (4)

where ∗ denotes a fixed point of the world-sheet flow, gs = e−<Φ> is the string coupling 1,
Φ is the dilaton field, χ is the Euler characteristic of the world-sheet manifold, and the

1The explicit powers of the string coupling constant are due to the fact that in string theory the C
function is a target-space-time integral over a measure

∫
dDX

√
Ge<Φ>χ, where G is the target space

metric. Such normalization factors accompany any σ-model vacuum expectation value < . . . >.
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Figure 1: The solid line is the the Saalschutz contour in the complex area (A) plane,
which is used to continue analytically the prefactor Γ(−s) for s ∈ Z+; it has been used in
conventional quantum field theory to relate dimensional regularization to the Bogoliubov-
Parasiuk-Hepp-Zimmermann renormalization method. The dashed line denotes the reg-
ularized contour, which avoids the ultraviolet fixed point A → 0, which is used in the
Closed Time-like Path formalism.

other part of Q is due to the local character of the renormalization-group scale [3], with
Gij related to divergences of < ViVj > and hence the Zamolodchikov metric [13].

Correlation functions in such a theory may be written in the form

AN ≡< Vi1 . . . ViN >µ= Γ(−s)µs < (
∫
d2z

√
γ̂eαφ)sṼi1 . . . ṼiN >µ=0 (5)

where the Ṽi have the Liouville zero mode removed, µ is a scale related to the world-sheet
cosmological constant, and s is the sum of the anomalous dimensions of the Vi : s =
−
∑N
i=1

αi
α
− Q

α
. As it stands, (5) is ill defined for s = n+ ∈ Z+, because of the

Γ(−s) factor [14]. To regularize this factor, we use the integral representation [15, 3]
Γ(−s) =

∫
dAe−AA−s−1, where A is the covariant area of the world sheet, and analyti-

cally continue to the contour shown in Fig. 1. Intepreting the Liouville field φ as time [3]:
t ∝ lnA, we interpret the contour of Fig. 1 as representing evolution in both direc-
tions of time between fixed points of the renormalization group: Infrared fixed point →
Ultraviolet fixed point→ Infrared fixed point.

Within this approach, it is not difficult to see that conventional S-matrix elements
are in general ill-defined in Liouville-string theory, and that scattering must be described
by a non-factorizable /S-matrix. Decomposing the Liouville field in an orthonormal mode
sum: φ(z, z̄) =

∑
n cnφn = c0φ0 +

∑
n 6=0 φn, where ∇2φn = −εnφn : n = 0, 1, 2, . . ., and

we separate the zero mode φ0 ∝ A−
1
2 with ε0 = 0. The correlation function with φ0

subtracted may be written as

ÃN ∝
∫

Πn 6=0dcnexp(−
1

8π

∑
n 6=0

εnc
2
n −

Q

8π

∑
n 6=0

Rncn +
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∑
n 6=0

αiφn(zi)cn)(
∫
d2ξ

√
γ̂e

α
∑

n6=0
φncn)s (6)

with Rn =
∫
d2ξR(2)(ξ)φn. We can compute (6) by analytically continuing [16] s to a

positive integer s→ n+ ∈ Z+. Denoting f(x, y) ≡
∑
n,m 6=0

φn(x)φm(y)
εn

and integrating over
the cn, we find

Ãn+N ∝ exp[
1

2

∑
i,j

αiαjf(zi, zj) +

Q2

128π2

∫ ∫
R(x)R(y)f(x, y)−

∑
i

Q

8π
αi

∫ √
γ̂R(x)f(x, zi)] (7)

When one makes an infinitesimal Weyl transformation γ(x, y)→ γ(x, y)(1− σ(x, y)), the
correlator ÃN transforms as follows [17, 18]:

δÃN ∝ [
∑
i

hiσ(zi) +
Q2

16π

∫
d2x

√
γ̂R̂σ(x) +

1

Â
{Qs

∫
d2x

√
γ̂σ(x) + (s)2

∫
d2x

√
γ̂σ(x)f̂R(x, x) +

Qs
∫ ∫

d2xd2y
√
γ̂R(x)σ(y)Ĝ(x, y)− s

∑
i

αi

∫
d2x

√
γ̂σ(x)Ĝ(x, zi)−

1

2
s
∑
i

αif̂R(zi, zi)
∫
d2x

√
γ̂σ(x)−

Qs

16π

∫ ∫
d2xd2y

√
γ̂(x)γ̂(y)R̂(x)f̂R(x, x)σ(y)}]ÃN (8)

where the hat notation denotes transformed quantities, and G(z, ω) ≡ f(z, ω)−1
2
(fR(z, z)+

fR(ω, ω)): fR(z, z) = limω→z (f(z, ω) + lnd2(z, ω)), where d(z, ω) is the geodesic distance
on the world sheet. We see explicitly that (8) contains non-covariant terms ∝ A−1 if the
sum of the anomalous dimensions s 6= 0. Thus the generic correlation function AN does
not have a well-defined limit as A→ 0.

In [3] we identified the target time as t = φ0 = −lnA, where φ0 is the world-sheet
zero mode of the Liouville field. The normalization follows from a consequence of the
canonical form of the kinetic term for the Liouville field φ in the Liouville σ model [6, 3].
The opposite flow of the target time, as compared to that of the Liouville mode, is, on the
other hand, a consequence of the ‘bounce’ picture [15, 3] for Liouville flow of Fig. 1. This
identification implies that, as a result of the above-mentioned singular behaviour in the
ultraviolet limit A→ 0, the correlator ÃN cannot be interpreted as an S-matrix element,
whenever there is a departure from criticality s 6= 0.

When one integrates over the Saalschultz contour in Fig. 1, the integration around
the simple pole at A = 0 yields an imaginary part [15, 3], associated with the instability
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Figure 2: Contour of integration in the complex t plane, used in the Closed Time Path
(CTP) formalism. In the Liouville string case t = −lnA, where A is the world-sheet area.

of the Liouville vacuum. We note, on the other hand, that the integral around the dashed
contour shown in Fig. 1, which does not encircle the pole at A = 0, is well defined. This
can be intepreted as a well-defined /S-matrix element, which is not, however, factorisable
into a product of S− and S†−matrix elements, due to the t dependence acquired after
the identification t = −lnA. This formalism is similar to the Closed-Time-Path (CTP)
formalism used in non-equilibrium quantum field theories [11], as we now discuss.

In the path-integral formulation of the CTP approach to non-equilibrium field the-
ory [11], the partition function is expressed as an integral over the path of Fig. 2:

Z[J1, J2 : ρ] =
∫

[DΦ] < Φ1, t = t0|ρ|Φ2, t = t0 > expi{TrΦD−1Φ +Sint[Φ] +TrJ.Φ} (9)

where [DΦ] = [DΦ1][DΦ2], with Φ1(Φ2) denoting fields whose time arguments are on
the upper (lower) segments of the CTP, with corresponding actions Sint[Φ1,2], D−1 is the
inverse field propagator and Sint[Φ] = Sint[Φ1]− Sint[Φ2]. The density matrix in (9) may
be represented as [11]:

< Φ1, t0|ρ|Φ2, t0 >= exp{
i

2

∫
K[Φj ]} (10)

where the integral extends over space only, at some initial time t0, and the kernel K[Φi]
may in general be expanded in powers of the boundary fields Φi:

∫
K[Φj ] = const +∫

KjΦj +
∫ 1

2
ΦiK

ijΦj +
∫ 1

6
KijkΦiΦjΦk + . . ..

In our string equivalent of this formalism, the rôle of the action Sint[Φi] is taken by the
Zamolodchikov C function (4), which depends on the σ-model background couplings/fields
{gi}. The topological summation over genera induces quantum fluctuations in the {gi} [19]
via a second-quantized effective partition function Zovergenera =

∫
[Dg]P[g]e−C[g]: C[g] =

c∗ − gχs
∫ +∞
−∞ dtβ̂iGij β̂

j, where Gij is the Zamolodchikov metric in theory space, which is
occupied with a probability distribution P[g]. An extreme case of a non-trivial topology
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leading to a divergence is one in which an infinitely long tube joins two distant parts of
a Riemann surface. In this case, the string propagator along the tube takes the form

D =
∑
m

∫
δ

dq

q

dq

q
qL0qL0 |m >< m| (11)

which has a double logarithmic divergence as the ‘size’ of the tube δ → 0. This scale may
be absorbed in a generalized version of the Fischler-Susskind mechanism [20], by intro-
ducing quantized couplings, ĝi(t) : t = −lnδ, with a theory-space probability distribution

P[g] = e−(ĝi(t)−g∗i)Gij(ĝj(t)−g∗j )/Γ(δ) (12)

where Γ(δ) ∝ |lnδ| as δ → 0 absorbs the infinities associated with the pinched world-
sheet tube. The analysis requires the introduction of world-sheet wormhole parame-
ters [21, 19, 22], which parallels the treatment of space-time wormhole parameters in
four-dimensional field theories [23]. In our interpretation of the Liouville scale as tar-
get time, flowing opposite to the conventional renormalization-group flow [3, 8, 15], the
above picture matches the standard renormalization-group approach, when one identifies
t∞ with the infrared fixed point. In this way one arrives at a (Liouville) string equivalent
of the initial-state density matrix (10).

After these preliminaries, we are now ready to present our construction of D-brane
foam, as an example of the above formalism. Compared to previous quantum treatments
of D branes [9], the key physics step is to find a representation of the appearance and
disappearance of virtual D branes. We shall argue that this may be found in the context
of the σ-model description of point defects on the world sheet, namely monopoles and
vortices, which are described by the following partition function [24]:

Z =
∫
DX̃exp(−βSeff (X̃))

βSeff =
∫
d2z[2∂X̃∂X̃ +

1

4π
[γvω

α
2
−2(2

√
|g(z)|)1−α

4 : cos(

√
2π
√
βq[X̃(z) + X̃(z̄)]) :

+
1

4π
[γvω

α′

2
−2(2

√
|g(z)|)1−α

′

4 : cos(
e
√
β

[X̃(z)− X̃(z̄)]) :] (13)

where α ≡ 2πβq,α′ ≡ e2/2πβ: q (e) is the vortex (monopole) charge, γv,m are the fugacities
for vortices and monopoles, and X̃ is a σ-model field, whose world-sheet equation of
motion admits vortex and monopole solutions:

∂z∂z̄X̃v = iπ
q

2
[δ(z − z1)− δ(z − z2)], ∂z∂z̄X̃m = −

eπ

2
[δ(z − z1)− δ(z − z2)] (14)

We note that β−1 plays the rôle of an effective temperature in (13), which requires for its
specification an ultraviolet (angular) cut-off ω. The vortex and monopole operators have
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anomalous dimensions:

∆m =
α

4
=
πβ

2
q2, ∆m =

α′

4
=

e2

8πβ
(15)

and the system (13) is invariant under the T-duality transformation [24]: πβ ←→
1

4πβ
; q ←→ e. We identify X̃ in (13) with the rescaled Liouville field

√
C−25
3gχs

φ, in

which classical solutions to the equations of motion and spin-wave fluctuations have been
subtracted [24], and relate β to the Zamolodchikov C function of the accompanying mat-

ter [24]: β → 3gχs
π(C−25)

. We will be interested in the case C > 25, and we shall consider only
irrelevant deformations, that do not drive the theory to a new fixed point. The world-
sheet system is then in a dipole phase [24]. We note that this system has the general
features discussed previously, namely non-conformal deformations, non-trivial Liouville
dynamics, and dependence on an ultraviolet cutoff. Furthermore, this system was dis-
cussed previously [3] as a model for space time foam in the context of (1 + 1)-dimensional
string black holes.

To see why we claim that it can be used to represent D-brane foam, we first consider
the scattering of close string states VT (X) = exp(ikMX

M − iEX0) : M = 1, . . .Dcr − 1,
where Dcr is the critical space-time dimension, in the presence of a monopole defect. An
essential aspect of this problem is the singular behaviour of the operator product expansion
of VT and a monopole operator Vm. Treating the latter as a sine-Gordon deformation of
(13), computing at the tree level using the free world-sheet action, and suppressing for
brevity anti-holomorphic parts, we find

Limz→w < VT (X0, X i)(z)Vm(X0)(w) . . . >

∼
∫
dDk

∫
dEδD(k)(. . .)[δ(ΣE + β)(z − w)−∆T−∆m +

δ(ΣE − β)(z − w)−∆T−∆m ] (16)

where ∆T = E2

2
, the energy-conservation δ functions result from integration over the

Liouville field X̃ ≡ X0, and (. . .) indicates factors related to the spatial momentum
components of VT , other vertex operators in the correlation function, etc.. We see that
(16) has cuts for generic values of ∆T +∆m, causing the theory to become that of an open
string.

In the particular case of the tree-level three-point correlation function ATTm =<
VT (E1)VT (E2)Vm(e/β1/2) >, integration over the Liouville field X0 imposes energy con-
servation in the form: ATTm ∝ [δ(E1 +E2 + e/

√
β)A′1 + δ(E1 +E2− e/

√
β)A′2] where the

two terms arise from the cosine form of the monopole vertex operator (13), though only
the second term is in the physical region E1,2 > 0:

E1 + E2 = e/
√
β = e (π(C − 25)/3gχs )

1
2 (17)
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This equation is consistent with the monopole describing a massive particle in target space-
time if C > 25. For this, we consider a model with 25 additional space-like coordinates
X i coupled to a linear dilaton background [6]:

∫
d2z∂X i∂Xjδij + i

∫
d2zQηiX

iR(2), where

ηi a fixed vector, which has C = 26 +O(βi)2 if Q =
√

C−25
3

.

In the open string picture (16), induced by the interaction of matter with the defects,
one may assume that the world-sheet curvature R(2) is concentrated along the cut, in
which case the linear-dilaton background term contributes an extrinsic-curvature term k̂
on the world-sheet boundary

i
∫
∂Σ
QηiX

ik̂ (18)

Since we wish to study the effects of virtual D branes, we need to be able to sew tree-
level amplitudes into loop diagrams with internal monopoles. This requires a better
understanding of the appropriate boundary conditions along the cut in the world sheet.
In the case of the Liouville field φ = X0, the appropriate boundary condition in open
string theory has been derived in [25]:

∂nX
0 + i

k̂

2
Q = 0 (19)

where k̂ is the extrinsic curvature of the fiducial metric, up to a possible cosmological
constant term and higher-order quantum corrections. We note that (19) reduces to Neu-
mann boundary conditions in the critical limit Q → 0, as is the case in the simplified
situation considered here and in ref. [24], where the cosmological constant term is ignored
in the Liouville action, thereby allowing the decoupling of the spin-wave part from the
monopole field X̃ ≡ X0. The space coordinates X i may be taken to have either Neu-
mann or Dirichlet boundary conditions, which are related by a T-duality transformation.
If Neumann boundary conditions are chosen, one must introduce a background gauge
field Ai related to possible Chan-Paton factors at the ends of the open string, and the
corresponding σ-model path integral is:

Z =
∫
DX iDX0e−

∫
Σ
d2z 1

4πα′
[∂Xi∂Xiδij−∂X0∂X0]−i

∫
∂Σ

Ai(X0)∂τXi+i
∫
∂Σ

k̂QηiX
i

(20)

where ∂τ denotes a tangential derivative on the world-sheet boundary ∂Σ. The Abelian
background gauge field depends on time X0 only, and we work in the gauge A0 = 0 for
simplicity.

It is convenient for our purposes to make a T -duality transformation: Y i
α = ∂αX

i:
εαβ∂αY

i
β = 0, which yields a tractable weak-coupling formalism. This we implement in

(20) using Lagrange multipliers λiα, X̂
i [26]:

Z =
∫
DX̂ i

∫
DX iDY i

αδ(Y
i
α − ∂αX

i)e−
∫

Σ
d2z[(Y iα)2−∂X0∂X0]−i

∫
∂Σ

Ai(X0)Y iτ

8



e−i
∫

Σ
d2zX̂iεαβ∂βY

α
i −i

∫
∂Σ

k̂QηiX
i

=∫
DX̂ i

∫
Dλiτ

∫
DX iDY α

i e
−
∫

Σ
d2z[(Y iα)2−∂X0∂X0]−i

∫
∂Σ

Ai(X0)Y iτ−i
∫
∂Σ

Y iτ X̂
i

ei
∫

Σ
d2zY iαεαβ∂βX̂

i−i
∫
∂Σ

(Y iτ λ
i
τ+Xi∂τλiτ+k̂QηiX

i) (21)

The boundary term in the integration over Y i
τ results in the Dirichlet constraints:

X̂ i + λiτ +Ai(X0) = 0, ∂τλ
i
τ + ik̂Qηi = 0 on ∂Σ (22)

with X̂ i described by a free σ-model action in the bulk 2. The boundary condition (22)
is not conformally invariant, which is known to be the case for fixed Dirichlet boundary
conditions in the presence of a linear-dilaton background [9]. This ‘conformal anomaly’
in the dual theory keeps track of the fact that the matter system has central charge 26,
but a non-critical number (D = 25) of spatial dimensions [6].

Conformal invariance can be restored by Liouville dressing 3. Fixed Dirichlet boundary
conditions are obtained by shifting the X0 field in such a way so that Ai(X

0) + λiτ =
A′i(X

′0), which can be done with an appropriate choice of A(X0) (‘Liouville dressing’).
The simplest choice is a gauge potential corresponding to a constant ‘electric’ field vi:

Ai(X
0) = const + viX

0 (23)

where vi is determined from (22), and is found to be proportional to ηik̂Q. Physically,
this means that a non-critical-dimension matter string theory, in a linear-dilaton back-
ground [6], corresponds, upon T -dualization in our Liouville framework, to a moving D-
brane with a velocity vi determined by the matter central charge deficit Q. The ‘motion’
of the D-brane implies target-time dependence provided by the Liouville field [3].

We note that, by applying the above dualization procedure for p of the spatial coor-
dinates, one can generate generic p-brane configurations, with p ≥ 1 Dirichlet directions.
The D0 particle is the first non-trivial structure in this hierarchy of stringy structures.
Since the collective coordinates of such D0 branes are associated with a canonically-
quantized phase space [22, 19], the above construction may be thought of as providing for
the emergence of a target space-time from string solitonic structures, where the space is
provided by the collective coordinates describing the position of the string soliton, and the
time is given by the Liouville mode of the non-critical two-dimensional model describing
the interaction of string matter with the world-sheet defects.

2This has Euclidean signature: the appropriate Minkowski theory is obtained by analytic continuation.
3Some authors have advocated restoration of conformal invariance for the Dirichlet linear-dilaton

system by modifying the standard D-brane boundary state by imposing appropriate boundary inter-
actions [27], which would restore conformal invariance for the matter system alone. However, here we
implement Liouville dressing of the non-critical matter system, which is crucial for our interpretation of
time as a Liouville mode [3, 6, 8].
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From the point of view of the target-space wave function of the string, the above
background gauge fields appear as Bohm-Aharonov phase factors. To see this, suppose
that a closed-string state encounters a monopole defect on the world sheet at (σ0, τ0),
corresponding to a spatial location yi and a time X0 = τ0 in the light-cone gauge. The
gauge field was absent before this encounter, so has a step-function singularity:

A(X0)i = (yi − (X0 − τ0)F 0i)Θ(X0 − τ0) (24)

where F 0i is the electric field strength, which has a δ(X0−τ0) singularity, but is otherwise
conformally invariant. In the T-dual picture, there is a corresponding ‘sudden’ appearance
of Dirichlet boundary conditions, breaking conformal invariance, that we interpret as the
excitation of a D brane in the vacuum. There is a corresponding singularity in the space-
time curvature [10] associated with the creation of the world-sheet monopole:

R 3 − 2
25δ(X0 − τ0)

[1 + Θ(X0 − τ0)(
∑25
i=1 y

2
i )]

2
(25)

which confirms our interpretation that the appearance of the world-sheet monopole cor-
responds to the appearance of a black hole represented by a D brane.

Propagation of a light closed-string particle through this representation of D-brane
foam involves, at the lowest order, a diagram with a disk topology, internal tachyon
vertices, and the boundary conditions (19, 22). This may describe scattering through a
real (or virtual) D-brane state, with production and decay amplitudes ATTm, subject to
the energy-conservation condition (17). The next term in a topological expansion in genus
g = 2−2#handles−#holes is an annulus with closed-string operator insertions. As has been
discussed elsewhere [28], this has a singularityA ∼ δ(E1+E2)

√
1

ln(δ)
in the pinched annulus

configuration δ → 0, which is regularized by introducing recoil operators [19, 29, 10] C,D
to describe the back reaction of the struck D brane:

Vrec = yiC + uiD : C ≡ ε
∫
∂Σ

Θε(X
0)∂nX

i D ≡
∫
∂Σ
X0Θε(X

0)∂nX
i (26)

where limε→0Θε(X
0) is a suitable integral representation of the step function, and yi,

ui are the position and momentum of the recoiling D brane. As discussed in [10], we
identify 1/ε2 ∼ lnδ, and in turn, using the Fischler-Susskind mechanism [20] on the
world sheet to relate renormalization-group infinities among different genus surfaces, we
identify t ∼ lnδ. The operators C,D consitute a logarithmic pair [29] with < C(z)C(0) >,
< C(z)D(0) > non-singular as ε→ 0+, whereas < D(z)D(0) > is singular with a world-
sheet scale dependence [29] D → D+ tC, from which we infer that ui → ui, yi → yi+uit,
corresponding to a Galilean time transformation [22], as is appropriate for a heavy D

brane with mass ∝ 1/gs (28).

The logarithmic operators (26) make divergent contributions to the genus-0 amplitude
in the limit where it becomes a pair of Riemann surfaces Σ1,Σ2 connected by a degenerate
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strip [19, 22]:

Astrip ∼ gs (ln2δ)
∫
d2z1D(z1)

∫
d2z2C(z2),

gs lnδ
∫
d2z1D(z1)

∫
d2z2D(z2), gslnδ

∫
d2z1C(z1)

∫
d2z2C(z2) (27)

Assuming a dilute gas of monopole defects on the world sheet, the amplitudes (27) become
contributions to the effective action [19, 22]. One may then seek to cancel them or else
to absorb them into scale-dependent σ-model couplings as described in equations (11,
12). If they could all be cancelled, the corresponding σ-model would be conformally
invariant, whereas absorption of these divergent contributions would result in departures
from criticality.

The leading double logarithm associated with the CD combination in (27) may indeed
be cancelled [22] by imposing the momentum conservation condition

ui = gs(k1 + k2)i (28)

as expected for a D brane soliton of mass 1/gs, which is also consistent with the tree-
level energy-conservation condition in (17), obtained by integration over the Liouville zero
mode. From the point of view of the Liouville theory on the open world sheet (21, 22), the
tree-level monopole mass term arises from a boundary term i

∫
∂ΣQX

0k̂ in the effective

action [25], where k̂ is the extrinsic curvature and Q is given by equation (3). When the
Liouville integration is performed at the quantum level, Q is replaced by its value in (3),
which receives a contribution from βyi = ui [10], by virtue of the logarithmic operator
product expansion of C and D [29]. Expanding the right-hand-side of (3), using (4), for
small |uiui| << 1, we find the quantum energy conservation condition:

E1 + E2 =
e
√
β

= e (π(C − 25)/3gs)
1/2 =

e
√
gs

(1 +
u2
i

2
+ . . .) (29)

The result (29) matches the momentum conservation condition (28) upon setting e
√
π/3 =

1/
√
gs, thereby confirming our interpretation of time as the Liouville field [3, 8]. Thus,

cancellation of the leading double logarithm in (27) enforces energy conservation d
dt
<

E >= 0, as argued previously [3] in a general renormalization-group approach to Liouville
dynamics.

The single logarithms associated with the CC and DD contributions in (27) are a
different story, since they can only be absorbed into quantum coupling parameters [19, 22]:
ŷi = yi+αC

√
lnδ, ûi = ui+αD

√
lnδ. The resulting probability distribution in theory space

(12) becomes time dependent [19, 22]:

P ∼
1

g2
s lnδ

e
− (q̂m−qm)Gmn(q̂n−qn)

g2slnδ (30)
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where qm ≡ {yi, ui}. Within the CTP-like interpretation of the Saalschutz contour re-
viewed earlier, this corresponds to a time-dependent /S-matrix transition from the initial-
state density matrix.

Although this is compatible with energy conservation in the mean, as discussed previ-
ously, it entails a non-quantum-mechanical modification of the energy fluctuations (E− <
E >)2. It has been shown elsewhere [3] that these may be related to the non-zero renor-
malization group functions βi:

d

dt
< (E− < E >)2 >=< (

d

dt
βi)Gijβ

j > (31)

It has been shown [19] in the Liouville-string framework that d
dt
Gij = QGij . Thus, using

the result [3] that Ṡ = βiGijβ
j, we find

d

dt
< (E− < E >)2 >=

1

2
S̈ −QṠ (32)

which may be considered as a quantum-gravitational version of the fluctuation-dissipation
theorem of statistical mechanics [3, 19]. We see that, the closer the system lies to its
infrared fixed point as t → ∞, the more classical it becomes, in the sense of an increase
in entropy and a corresponding decrease in its energy fluctuations. This result in the
context of Liouville D branes is in agreement with the general picture, advocated in [3],
that a classical field-theoretic vacuum is obtained from a non-critical string theory via
decoherence in ‘theory space’.

To acquire some feeling for the possible order of magnitude of such decohering effects,
we estimate from (28) that |βyi| = |ui| = O(E/MP ), where E is the typical energy
of a closed-string light-particle state, and we neglect numerical factors, powers of gs, etc.
Correspondingly, assuming an effective D-brane density of order unity per Planck volume,
we estimate Ṡ = O(E2/M2

P ), whereas d
dt
< (E− < E >)2 > vanishes to this order, since

our heavy branes do not accelerate: d
dt
ui = 0 [10, 22]. As has been discussed elsewhere [3],

the corresponding time-evolution equation for the density matrix ρ of a light-particle state
takes the form:

∂

∂t
ρ = i[H, ρ] + /δHρ : /δH = iβiGij [g

j, ] (33)

and we estimate |/δH| = O(E2/MP ), in agreement with previous estimates [3, 30], and

close in order of magnitude to the experimental bound from the K0 −K
0

system [2, 31].
In higher orders, we expect d

dt
βi = βm∂mβ

i ∼ 2βm (cimkg
k + O[g2]), where the operator-

product-expansion coefficients cijk are of order E2/M2
P in the closed-string sector, or E/MP

in the open-string sector, as in the case of D branes. Thus, (31) is suppressed - as
compared to /δH (33) - by higher powers of Planck Mass, at least as E3/M2

P in the
open-string sector, which makes such energy fluctuations difficult to detect in foreseeable
experimental facilitites.
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Finally, we comment on the new uncertainty relations that stem from the above con-
struction, which could be used to probe the quantum-gravity structure of a D-brane space
time. The key observation is that the target time X0 ∝

√
C − 25ϕ, where ϕ is the original

Liouville field appearing in the conformal scale factor of the world-sheet metric. From (3),
then, and the fact that summing over world-sheet genera leads to a canonical quantization
of the σ-model couplings yi, ui [19, 22], we see that in this picture X0 appears as an ‘oper-
ator’ in the D-brane collective phase space, leading to non-trivial commutation relations
between the time X0 and the position (collective) coordinates of the D brane [32]. It
can be easily seen that, for slowly-moving non-relativistic branes: |ui|2 << 1 as we are
considering here, such commutators lead to the following space-time uncertainty relation:

∆yi∆X
0 ≥ g1/2

s ui + . . . (34)

Non-trivial space time uncertainty relations of the form (34), but independent of the string
coupling, had been derived previously in the context of critical (conformal) strings and D
branes in ref. [33].
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