39,507 research outputs found

    Could a nearby supernova explosion have caused a mass extinction?

    Full text link
    We examine the possibility that a nearby supernova explosion could have caused one or more of the mass extinctions identified by palaeontologists. We discuss the likely rate of such events in the light of the recent identification of Geminga as a supernova remnant less than 100 pc away and the discovery of a millisecond pulsar about 150 pc away, and observations of SN 1987A. The fluxes of γ\gamma radiation and charged cosmic rays on the Earth are estimated, and their effects on the Earth's ozone layer discussed. A supernova explosion of the order of 10 pc away could be expected every few hundred million years, and could destroy the ozone layer for hundreds of years, letting in potentially lethal solar ultraviolet radiation. In addition to effects on land ecology, this could entail mass destruction of plankton and reef communities, with disastrous consequences for marine life as well. A supernova extinction should be distinguishable from a meteorite impact such as the one that presumably killed the dinosaurs.Comment: 10 pages, CERN-TH.6805/9

    Trigger and data acquisition

    Full text link
    The lectures address some of the issues of triggering and data acquisition in large high-energy physics experiments. Emphasis is placed on hadron-collider experiments that present a particularly challenging environment for event selection and data collection. However, the lectures also explain how T/DAQ systems have evolved over the years to meet new challenges. Some examples are given from early experience with LHC T/DAQ systems during the 2008 single-beam operations.Comment: 32 pages, Lectures given at the 5th CERN-Latin-American School of High-Energy Physics, Recinto Quirama, Colombia, 15 - 28 Mar 200

    A Liouville String Approach to Microscopic Time and Cosmology

    Full text link
    In the non-critical string framework that we have proposed recently, the time tt is identified with a dynamical local renormalization group scale, the Liouville mode, and behaves as a statistical evolution parameter, flowing irreversibly from an infrared fixed point - which we conjecture to be a topological string phase - to an ultraviolet one - which corresponds to a static critical string vacuum. When applied to a toy two-dimensional model of space-time singularities, this formalism yields an apparent renormalization of the velocity of light, and a tt-dependent form of the uncertainty relation for position and momentum of a test string. We speculate within this framework on a stringy alternative to conventional field-theoretical inflation, and the decay towards zero of the cosmological constant in a maximally-symmetric space.Comment: Latex 23 pages, no figures, CERN-TH.7000/93, CTP-TAMU-66/9

    Some Physical Aspects of Liouville String Dynamics

    Get PDF
    We discuss some physical aspects of our Liouville approach to non-critical strings, including the emergence of a microscopic arrow of time, effective field theories as classical ``pointer'' states in theory space, CPTCPT violation and the possible apparent non-conservation of angular momentum. We also review the application of a phenomenological parametrization of this formalism to the neutral kaon system.Comment: CERN-TH.7269/94, 37 pages, 2 figures (not included), latex. Direct inquiries to: [email protected]

    Testing Quantum Mechanics in the Neutral Kaon System

    Get PDF
    The neutral kaon system is a sensitive probe of quantum mechanics. We revive a parametrization of non-quantum-mechanical effects that is motivated by considerations of the nature of space-time foam, and show how it can be constrained by new measurements of KL2πK_L \rightarrow 2\pi and KL,SK_{L,S} semileptonic decays at LEAR or a ϕ\phi factory.Comment: 10 page

    A multiaxial theory of viscoplasticity for isotropic materials

    Get PDF
    Many viscoplastic constitutive models for high temperature structural alloys are based exclusively on uniaxial test data. Generalization to multiaxial states of stress is made by assuming the stress dependence to be on the second principal invariant (J sub 2) of the deviatoric stress, frequently called the effective stress. If such a J sub 2 theory, based on uniaxial testing, is called upon to predict behavior under conditions other than uniaxial, e.g., pure shear, and it does so poorly, nothing is left to adjust in the theory. For a fully isotropic material whose inelastic deformation behavior is relatively independent of hydrostatic stress, the most general stress dependence is on the two (non-zero) principal invariants of the deviatoric stress, J sub 2 and J sub 3. These invariants constitute what is known as an integrity basis for the material. A time dependent constitutive theory with stress dependence on J sub 2 and J sub 3 is presented, that reduces to a known J sub 2 theory as a special case

    Is Nothing Sacred? Vacuum Energy, Supersymmetry and Lorentz Breaking from Recoiling D branes

    Get PDF
    Classical superstring vacua have zero vacuum energy and are supersymmetric and Lorentz-invariant. We argue that all these properties may be destroyed when quantum aspects of the interactions between particles and non-perturbative vacuum fluctuations are considered. A toy calculation of string/D-brane interactions using a world-sheet approach indicates that quantum recoil effects - reflecting the gravitational back-reaction on space-time foam due to the propagation of energetic particles - induce non-zero vacuum energy that is linked to supersymmetry breaking and breaks Lorentz invariance. This model of space-time foam also suggests the appearance of microscopic event horizons.Comment: 28 pages LaTeX, 5 eps figures, talk presented by DVN at 4th International Symposium On Sources And Detection Of Dark Matter In The Universe (DM 2000), Marina del Rey, California, 20-23 Feb 200

    Liouville Cosmology

    Full text link
    Liouville string theory is a natural framework for discussing the non-equilibrium evolution of the Universe. It enables non-critical strings to be treated in mathematically consistent manner, in which target time is identified with a world-sheet renormalization-group scale parameter, preserving target-space general coordinate invariance and the existence of an S-matrix. We review our proposals for a unified treatment of inflation and the current acceleration of the Universe. We link the current acceleration of the Universe with the value of the string coupling. In such a scenario, the dilaton plays an essential background role, driving the acceleration of the Universe during the present era after decoupling as a constant during inflation.Comment: 23 pages latex, 2 eps figures, contribution to the proceedings of the Dark 2004 conference, College Station, October 200

    A Bait Attractant Study of the Nitidulidae (Coleoptera) at Shawnee State Forest in Southern Ohio

    Get PDF
    Four baits were tested for efficacy in attracting sap beetles (Nitidulidae) at two sites in the Shawnee State Forest over two collection periods in 1992. Species taken were categorized into three groups: abundant, moderate, and uncommon. At Site 1, nitidulids displayed a strong preference for whole wheat bread dough, followed by fermenting brown sugar, and fermenting malt/molasses solution, and vinegar, respectively. Site 2 collections showed a similar trend to Site 1, but the order of preference was switched for brown sugar and malt/molasses solution. Of the 20 species collected, six species were abundant, seven species were moderate, and seven species were locally uncommon

    A Non-Critical String Approach to Black Holes, Time and Quantum Dynamics

    Full text link
    We review our approach to time and quantum dynamics based on non-critical string theory, developing its relationship to previous work on non-equilibrium quantum statistical mechanics and the microscopic arrow of time. We exhibit specific non-factorizing contributions to the {\nd S} matrix associated with topological defects on the world sheet, explaining the r\^ole that the leakage of W{W_{\infty}} charges plays in the loss of quantum coherence. We stress the analogy with the quantum Hall effect, discuss the violation of CPTCPT, and also apply our approach to cosmology.Comment: CERN-TH.7195/94, 54 pages (references on Lie-admissibility added
    corecore