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1 Introduction and Summary

One of the most profound issues in microphysics is a consistent formulation of
gravity. The only candidate we have for resolving this issue is string theory, which
is known [1] to be free of the “trivial” perturbative divergences that beset quan-
tum calculations in a fixed smooth space-time background. Potentially far more
profound problems arise when one considers curved backgrounds with horizons or
singularities. Semiclassical calculations in such backgrounds indicate that a pure
quantum-mechanical description cannot be maintained, as reflected in the thermo-
dynamic description of macroscopic black holes, with non-zero temperature and
entropy [2].

The question arises whether such a mixed quantum description is also necessary
at the microscopic level, once quantum fluctuations in the space-time background
and back-reaction of particles on the metric are taken into account. Hawking [3] has
argued that asymptotic scattering must be described in terms of a linear operator
/S relating “in” and “out” density matrices :

ρout = /Sρin (1)

that does not factorize as a product of S and S† matrix elements. It has been
argued [4] that, if this is the case, there should be a corresponding modification of
the quantum Liouville equation describing the time-evolution of the density matrix:

ρ̇ = i[ρ,H ] + /δHρ (2)

This would cause pure states to evolve into mixed states, yielding a loss of coherence
associated with the loss of information accross microscopic event horizons, that
would be enhanced for macroscopic systems [5].

Ordinary local quantum field theory is an incomplete guide to these issues, but
string theory appears to resolve them. The scattering of particles off a black hole in
string theory is described by a well-defined S matrix, which reflects the existence of
an infinite set of local symmetries (and associated conserved charges) that interelate
(and characterize) different string states in the presence of a black hole, as long as
quantum fluctuations in the space-time background and back-reaction of particles on
the metric are ignored. However, we have argued [6, 7] that non-trivial modifications
(1) of the effective field theory description of scattering and (2) of the quantum
Liouville equation appear once these effects are taken into account. We describe such
effects using non-critical string theory [8], with time introduced as a renormalization
group flow variable [6], associated with a covariant world-sheet scale introduced via
the Liouville field [9]. We do not review here the basics of this approach, which are
described elsewhere [7, 10, 11]. However, we do discuss some physical aspects of this
approach that are particularly relevant to the focus of this meeting.



One is a possible microscopic arrow of time [6, 7]. As we discuss in sections 2 and
3, string theory satisfies the general condition for the existence of an irreversible
“ageing” variable, as a corollary of the existence of the Zamolodchikov metric [12]
in the space of couplings of two-dimensional field theories on the world sheet. The
arrow of time emerges as a result of the stringy symmetry-induced couplings of light
particles to massive, non-propagating solitonic states of the string in a black-hole
background [13]. In this respect, we see some similarity with ideas advocated by
Penrose in the context of local field theories in highly-curved space-times [14].

A second issue is the emergence of semiclassical “pointer” states which describe
specific low-energy effective quantum field theories obtained from string theory. As
we discuss in section 4, these also appear as a result of the inevitable couplings to
unobservable non-propagating solitonic string states.

Then we discuss the violation of CPT [15] and other conservation laws in sec-
tion 5. CPT is expected to be violated in any theory, such as ours, which allows
pure states to evolve into mixed states [16]. As we have discussed elsewhere, en-
ergy [15] and probability [6] are conserved in our string approach to density matrix
mechanics. However, the renormalizability of the theory, which guarantees energy
conservation, does not guarantee the conservation of angular momentum. Unlike
string contributions to the increase in entropy, which cannot cancel, the apparent
non-conservation of angular momentum may vanish in some backgrounds, though
not in one cosmological background that we study.

Finally, in section 6 we review the formalism [4, 15, 17] for describing phenomeno-
logically possible modifications of quantum mechanics and violations of CPT in the
neutral kaon system, which is also discussed here by Huet [18, 19].

2 A Primer in Non-Equilibrium Quantum Statis-

tical Mechanics

One of the open problems of any local field theory is how to incorporate an
irreversible time variable. In the way formulated so far, at a ‘microscopic’ or ‘fun-
damental constituents of matter’ level, time reversal symmetry is unbroken. The
arrow of time comes later, when one makes a ‘reduction’ of the degrees of freedom in
order to describe the observable world. In cosmology, for instance, the arrow of time
is believed to be induced by ‘integrating out’- in a path-integral sense - unobserved
states hidden behind the ‘particle horizons’. In a similar spirit, in thermodynam-
ics the arrow of time, or the ‘second law’ as it is commonly called, is induced by
the ‘open-ness’ of the subsystem under consideration. Boltzmann’s second law of



entropy increase implies the existence of a Lyapounov function (entropy) for the
subsystem, which increases with time, whilst the entropy of the total system re-
mains constant. In the modern formulation of Boltzmann’s law [2], where entropy
increase is associated with ‘information leakage ’ from the open subsystem to the
‘environment’, this entropy increase implies an irreversible arrow of ‘time’ [16].

From the above discussion it becomes evident that the concept of an irreversible
time variable in statistical mechanics is different from that of time in Einstein’s
General Relativity Theory, where it is a coordinate of the space-time manifold that
is completely reversible. Misra and Prigogine [20] have discussed this issue formally
from a quantum statistical mechanics point of view by introducing the concept of
‘measurable entities’ into this framework. They assumed the existence of a system
whose distribution function in phase-space ρ(p, q, t) evolves reversibly under the flow
of a time co-ordinate, t. Such a flow is described by a unitary transformation Ut:

ρ(p, q, t) = Utρ(p, q, 0)U †
t (3)

Reversible time translations are generated by the Hamiltonian H of the system, and
the time evolution equation for ρ has the familiar Liouville form

∂tρ = [ρ, L]PB (4)

where L = e−iHt is the Liouvillean, and [, ]PB denotes Poisson brackets or com-
mutators multiplied by a factor i/h̄, depending whether one considers classical or
quantum systems.

To introduce a time arrow in the above framework, Misra and Prigogine [20]
assume that the physical states, i.e. the ones that can be measured in an experiment,
have a phase-space distribution function ρ̃ which is related to ρ via a non-unitary
transformation : Λ

ρ̃ = Λρ (5)

The transformation Λ may be an invertible map or a projection P . The evolution
of ρ̃ is governed by a strongly irreversible Markov process (s.i.m.p.), defined by the
adjoint W ∗

t of a positive semigroup Wt defined for t ≥ 0:

ρ̃(t) = W ∗
t ρ̃(0) (6)

with W ∗
t satisfying the interwining condition [20]

Λ−1UtΛ = W ∗
t or PUtP = W ∗

t (7)

and
∂tρ̃ = Φ(L)ρ̃ : Φ(L) = ΛLΛ−1 or PLP (8)

It can be shown that (8) implies the existence of a Lyapounov function, if and only
if the following condition of star hermiticity is satisfied [20]

iΦ(L) = (iΦ(L))∗ ≡ Φ†(−L) (9)



A particular case of an invertible Λ transformation is provided under certain condi-
tions by a non-conservative force in the statistical mechanics of open systems [21].
If Fi is such a non-conservative force for a system whose hamiltonian H is such that
∂H/∂pi 6= 0 as in a model of dissipation, then the evolution of the density matrix is
described by an equation of the form [22]

∂tρ̃ = −{ρ̃,H}PB +
∂H
∂pi

Gij
∂ρ̃

∂pj
(10)

with Gij [Fi] a matrix depending on the non-conservative forces. It has been shown
in ref. [21] that (10) satisfies the star hermiticity condition (9) if and only if

Gij = Gji : Gij ∈ R (11)

In this way the theory of such an open statistical system is connected to the Λ-
transformation theory of reduction to a physical subspace.

The issue of demonstrating that time has an arrow is a bit more subtle and requires
more careful consideration. In the Misra-Prigogine [20] approach, the starting point
is a unitary transformation Ut, which governs the time t flow of the system ρ. This
implies straightforwardly that if one has a s.i.m.p. in the positive time direction
t ≥ 0, described by a transformation Λ+, then one will also have a s.i.m.p. in the
t < 0 direction governed by a transformation Λ−. The time arrow is introduced into
the system only if the dynamics implies that [20] Λ+ 6= Λ−.

If the above conditions are met, the construction of an internal time or age opera-
tor, T , is possible according to a theorem of Misra and Prigogine [20]. The operator
T is defined in terms of its eigenvalues λ as follows:

UtTU
†
t = I + λT (12)

and its action on physical states leads to a non-decreasing sequence of the eigenvalues
λ.

What we shall argue in this talk is that a similar situation occurs in non-critical
string theory [8] when microscopic quantum fluctuations of space-time into non-
trivial, highly-curved (singular) backgrounds are taken into account [6] via non-
critical string theory. The existence of such singularities in the structure of space-
time implies the existence of non-decoupling, delocalized topological string modes
which are non-propagating and can be thought of as remnants of a highly-symmetric
(topological) phase of string theory [23, 24]. Such modes cannot be measured in local
scattering experiments conducted by a conventional observer, and therefore define
a sort of ‘environment’ for the propagating string modes. Time is then introduced
[6] into this framework as a dynamical local renormalization group scale on the
world-sheet [25, 26] (Liouville field), and its arrow is established as a result of the



unitarity of the effective string σ-model describing string propagation in the singular
background under consideration [27]. We shall be very brief in this description due
to lack of space and time (!). The interested reader may find detailed presentation
of this work in ref. [10] and references therein.

3 The Two-dimensional Stringy Black Hole and

the Arrow of Time in String Theory

In the first-quantized σ-model string formalism the propagation of string parti-
cles in non-trivial backgrounds is described by deforming the σ-model Lagrangian
by the appropriate vertex operators. The couplings of such operators are the back-
ground fields of the target space-time. Conformal invariance on the world sheet
implies the vanishing of the pertinent renormalization-group β functions, which are
interpreted as equations of motion for the backgrounds. In this way the dynamics
of any consistent background is described by marginal (in a renormalization-group
sense) deformations of the world-sheet action, that preserve by construction the
conformal symmetry. The construction of the appropriate vertex operators for the
various background fields relies on the completeness of the set of operators with
zero anomalous dimensions, or (1, 1) operators. As a result of this completeness
property, higher-level operators appear in the operator product expansion (OPE)
of lower-level operators. For instance, starting from the lowest-level bosonic string
states, the so-called tachyons, one finds the following OPE between the respective
vertex operators [28]

VT (z, z̄) ⊗ VT (z′, z̄′) ∝ 1

|z − z′|4VT (
z + z′

2
,
z̄ + z̄′

2
) +

∑

N≥1

VN (less singular) (13)

where the sum is over higher-level string states N ≥ 1, and VN denote the asso-
ciated vertex operators (the corresponding less-singular world-sheet factors are not
exhibited for convenience).

The physical spectrum of the theory is defined in flat space time, and is assumed
background-independent, for general covariance reasons. Thus the concept of higher-
level string states is defined unambiguously in any background. These remarks will
be crucial for our subsequent discussion of the spectrum of the two-dimensional
stringy black hole.

If the theory is formulated on a world sheet with fixed topology, e.g. a sphere,
then the corresponding background field theory will be ‘classical’ in target space.
Quantum background corrections are described by higher-genus effects on the world
sheet [29]. However, such effects can be effectively projected onto the world-sheet
sphere [30], by including corrections to the conformal invariance conditions which
supplement those obtained by the perturbative renormalization-group treatment on
fixed-genus Riemann surfaces.



In this context, target-space quantum gravity effects, such as black hole creation
and evaporation, Hawking radiation, etc., can be studied by conformal field theory
methods. The only explicit example which has been solved exactly from a conformal
field theory point of view is the two-dimensional (target-space) black hole of ref.
[27]. The model is described by a gauged Wess-Zumino conformal field theory on a
non-compact group SL(2, R)/U(1). This theory posesses one propagating degree of
freedom, a massless scalar field called a ‘tachyon’ for historic reasons, and an infinity
of non-propagating higher-level string modes with discrete energies and momenta
[31]. The target-space metric for this two-dimensional string theory assumes the
following form in the Minkowski SL(2, R)/O(1, 1) case [27]:

ds2 = dr2 − tanh2rdt2 (14)

where r is space-like and t is time-like. It has been shown in ref. [6, 11] that, as a
result of the static nature of the background (14), one may consider it as a fixed point
of a renormalization group transformation on the world sheet, with t interpreted as
a local renormalization group scale. This formalism is known as Liouville string
dynamics. The central charge of the model is c = 3k

k−2
− 1, with k the Wess-Zumino

level parameter. In this formalism, due to the c = 26 critical string character in
the case k = 9/4, one obtains dynamically a Minkowski signature [8, 9, 32, 33] in
target space-time, and the Euclidean SL(2, R)/U(1) counterpart can be obtained
by analytic continuation [11].

An important element in the stringy black hole (14) is the existence of a dilaton
field, whose presence is necessitated by the non-critical dimensionality of the target
space-time [8]. From our point of view, the existence of a non-trivial dilaton is
important because it implies that a two-dimensional black hole can have a non-
trivial entropy S despite the absence of an horizon area [34]

S = eΦH (15)

where ΦH is the value of the dilaton field at the horizon point [27]. This helps
justify the use of a two-dimensional toy model as a prototype for realistic string
computation relevant to the definition of time in string theory.

In the flat target space-time case of two-dimensional strings, known as the c = 1
string model, the tachyon deformation, which coincides with the world-sheet cos-
mological constant operator, is exactly marginal, i.e. its renormalization group
β-function vanishes identically. This implies the vanishing of the respective OPE
coefficients in (13). However, this is not so in the black hole case. From the struc-
ture of the pertinent OPE of two tachyon deformations [35], one can immediately
conclude that the exactly marginal deformation that turns on a non-trivial tachyon
background turns on an infinity of higher-level (topological) modes as well. In
the two-dimensional string theory one may use SL(2, R)-isospin quantum numbers
(j,m,m), to classify the states, where m (m) are third components of the isospin in



left (right) sectors of the closed string, characterized by a common SL(2, R) isospin
j. In this framework, the exactly marginal deformation of a Euclidean black hole1

is represented [35] by an infinite sum of vertex operators Wj,m,m

L1
0L

1
o = F c,c

− 1
2
,0,0

+W−1,0,0 −W−1,0,0 + . . . (16)

where

F c,c

− 1
2
,0,0

(r) =
1

coshr
F (

1

2
,
1

2
; 1, tanh2r) (17)

with

F (
1

2
,
1

2
, 1; tanh2r) ≃ 1

Γ2(1
2
)

∞
∑

n=0

(1
2
)n(1

2
)n

(n!)2
[2ψ(n+ 1) − 2ψ(n+

1

2
) +

+ ln(1 + |w|2)](
√

1 + |w|2 )−n (18)

is the tachyon operator, transforming according to a continuous SL(2, R) represen-
tation, denoted by the superscript (c, c) [35].

In a low-energy world, all measurements are made by local scattering experiments
employing only the F c,c

− 1
2
,0,0

deformation. The global modes W−1,0,0, . . . can be mea-

sured by Aharonov-Bohm experiments [37] in higher-dimensional theories (in which
case the two-dimensional string prototype considered above is viewed as describing
appropriate spherically-symmetric s-wave field configurations [38]). Even in that
case, the infinite number of the associated quantum numbers makes a complete
measurement impossible in practice, and hence the mere existence of these topolog-
ical modes implies a ‘quasiparticle’ [22] structure for the propagating string modes,
in the sense of modifying their energy-momentum dispersion relations. This is a
generic feature of a non-critical string [8]. Any deviation from conformal invariance
in the sub-sytem of the propagating string modes will result in Liouville-dependent
dilaton terms. Such terms are responsible for the existence of screening charges in
Liouville correlation functions. Their presence affects the energy-momentum disper-
sion relation of a propagating string mode. For instance, for the tachyon mode one
has, in the simplest case of a non-critical bosonic string, of matter central charge
Cm, propagating in a linear dilaton background, [8]

− 1

2
(E2 +Q2 − p2) = 1 ; Q2 = Cm − 25 (19)

In our stringy space-time foam case the modification is much more complicated, due
to the non-trivial structure of the background target space-time.

1At present, exactly-marginal deformations of Wess-Zumino black hole models have been con-
structed only for the Euclidean case. There are technical subtleties in the Minkowski case, which
is assumed to be obtained by analytic continuation. See ref. [36] for a discussion of this procedure.



As we have discussed above, the coupling between propagating and non-propagating
string modes is a consequence of the world-sheet conformal symmetry. There is a
deeper reason for this, which appears to be generic in string theory. This is provided
by the infinite-dimensional gauge symmetries that characterize strings and are re-
sponsible for level mixing. Such symmetries can be elevated from the world-sheet
to target space-time [39, 40]. Techniques for such an elevation have been described
in the literature [41], where we refer the interested reader. For our purposes, we
note that in the two-dimensional Wess-Zumino strings the world-sheet ancestors of
the target-space gauge symmetries are W∞ Lie-algebraic structures pertaining to
spin 2 and higher world-sheet operators [13, 42]. The sub-alagebra generated by the
spin 2 (stress-tensor) operator is the conformal algebra, which is part of W∞. It
is a straightforward computation to show that the world-sheet W∞ charges do not
commute with the string level number operator [37]. Hence the ‘innocent’ require-
ment of conformal invariance in the deformation (16), which mixes the various string
levels, finds a natural explanation within the more general context of stringy gauge
symmetries that have no analogue in any local field theory. In higher-dimensional
string theories, such symmetries are spontaneously broken by the graviton back-
ground field [43], as one expects for a mass-level mixing symmetry in the presence
of a non-zero mass gap characterizing a propagating massive mode. However, in
the case of a topological mode the notion of a mass gap is not defined in the same
way. Hence symmetries mixing propagating with topological modes are not neces-
sarily broken by non-trivial backgrounds. Moreover, in two space-time dimensions
spontaneous breaking cannot occur [44], so in the case of the two-dimensional black
holes the W∞ symmetries should be considered as unbroken, provided one takes the
infinite set of higher-level discrete modes into account. Their presence is essential
for the maintenance of quantum coherence [13], as a result of the phase-space area
preserving nature of such algebraic structures [45]. A low-energy measurement pro-
cess effectively breaks such symmetries, since it effectively integrates out the discrete
modes in (16). This implies in turn the non-conservation of the phase-space volume
for the propagating modes under target-time evolution, and hence a modification
of the quantum mechanics for the low-energy modes, which thereby behave as an
‘open’ system [20, 22].

From this point of view, one can define a reduction to a physically-measurable
subspace by a sort of Λ transformation of the type discussed by Misra and Prigogine
[20] as follows [10] :

ρ̃(X,P, gi, pi, t) ≡ eF [gi,pi,t]−H[gi,pi,t] (20)

where t is introduced as a covariant renormalization-group scale via a Liouville field,
X and P denote the phase space of the string particle, and gi,pi the background field
theory phase-space over which the string propagation takes place. In equation (20),
H is the corresponding 1st-quantized string Hamiltonian [29] and F is the σ-model
effective action that generates string amplitudes for the propagating single-particle
string modes gi. In the two-dimensional case these modes are just the tachyon



deformations F c,c

− 1
2
,0,0

.

On the other hand, the ‘full’ string theory, including the global modes, which
corresponds to the unitary initial system ρ of Misra and Prigogine [20], is defined
through a σ-model deformed by the exactly-marginal deformation (16):

ρ(X,P, gi, pi, t) ≡ eF [L1
0
L

1

0,t]−H[L1
0
L

1

0,t] (21)

The (abstract) analogue of a Λ transformation in this case is essentially the process
of a string path integration of the topological modes in (21). Formally such a
procedure is still not rigorously known, given the absence of a satisfactory string
field theory so far. In practice however, the first quantized approach, based on the
σ-model description (20), proves sufficient. Using the previously-mentioned theorem
of Misra and Prigogine [20], one expects to be able to define an internal time, that
flows irreversibly under the dynamics of the subsystem of the low-energy string
modes. Indeed, in our case we can see how to define an internal time by looking at
the important difference between (20) and (21). Equation (21) is mathematically
consistent as it stands, given the exactly-marginal nature of the deformation (16).
In this case, the local renormalization group scale decouples from the background
σ-model couplings, which thus become static [27, 11], and it only appears as a
coordinate of the target space of the σ-model. In contrast, equation (20) requires
renormalization, since the tachyon deformation (17) breaks conformal symmetry,
and hence induces ultraviolet divergences in the world-sheet model. Consistency
is restored by appropriate Liouville dressing using the formalism of curved-space
renormalization in field theory [25, 26]. In our case, to leading order in the inverse
Wess-Zumino level parameter 1

k
, and hence to first order in the Regge slope α′, only

the OPE coefficients in the β function are important, and hence the appropriate
Liouville dressing is given by [11]

∫

d2zgVg(r) →
∫

d2zgeαgφVg(r) ≡
∫

d2zgVg(r) −
∫

d2g2CgggVg(r)φ+ . . . (22)

where r is a σ-model spatial coordinate, and g is a generic deformation coupling (for
simplicity we have assumed a single deformation). It is conjectured that a similar
consistent result is obtained for finite k, and hence to all orders in α′.

The dressing (22) corresponds to an effective anomalous dimension for the cou-
pling of the tachyon deformation, which depends on the zero mode of the local renor-
malization scale/Liouville field φ0. Technically, one employs the so-called ‘fixed-area
constraint’ [32] in correlation functions by inserting the identity

∫

dAδ(A−
∫

d2zeφ
√

γ̂) = 1 (23)

where A is a covariant world-sheet area, and γ̂ denotes a fiducial world-sheet metric.
On the one hand, this formalism allows an integration over the Liouville mode φ in



the σ-model path-integral, as appropriate for its target-time interpretation, whilst
on the other it preserves an explicit global renormalization-scale A dependence in
the integrand of the A-integral corresponding to the ‘physically’ measurable part
of the correlation functions, which thus become target-time dependent. The global
scale corresponds to the zero mode of the Liouville field, and this will always be
understood in the following. It will be essential for determining the physical sense
of the time flow to be discussed later. It should be remarked that in this formalism
the renormalized deformations of the σ-model Lagrangian are conveniently written
as

∫

d2zgi[X(z, z̄), φ(z, z̄)]Vi[X(z, z̄), φ(z, z̄)] =
∫

d2z
∫

dDygi(y)δ(D−1)(y −X(z, z̄))δ(0)(y0 − φ(z, z̄))Vi[X, φ] (24)

where D is the dimension of target space-time, including the Liouville mode as a
coordinate, and appropriate normal ordering is understood. In this way summa-
tion over the index i can include the integration over space-time coordinates y.
Equation (24) encapsulates the relationship between the coordinate time y0 and the
irreversible Liouville mode. Thus, the above procedure amounts to the advertized
‘temporal’ dependence of the σ-model background couplings, where the time appears
as an ‘external’ irreversible evolution parameter in target space-time and is at the
same time related to a non-trivial quantum world-sheet field (the Liouville mode)
in the σ-model. In the two-dimensional black-hole example this effect describes the
collective effects of massive global string modes (16).

The induced arrow of time follows nicely from the properties of correlation func-
tions for tachyon (matter) deformations in the Liouville-dressed theory. The crucial
assumption is that the effective theory after integrating out massive global string
modes is unitary on the world sheet. This implies that the induced renormalization
group flow as a result of the dressing (22) will be irreversible, as a consequence of the
Zamolodchikov C-theorem [12]. The associated Lyapounov function is constructed
out of components of the world-sheet stress tensor

C = 2z4 < T (σ)T (0) > −3z3z̄ < Tzz̄(σ)T (0) > −6z2z̄2 < Tzz̄(σ)Tzz̄(0) > (25)

where T ≡ Tzz, Tzz̄ is the trace of the stress tensor, and < . . . > denotes a σ-model
v.e.v. with respect to the Liouville renormalized deformation [F c,c

− 1
2
,0,0

] in the sense

of equation (22). The C-theorem states that the function C flows irreversibly under
the flow of the scale t, the zero mode of the Liouville field :

∂tC = −12 < Tzz̄(σ)Tzz̄(0) >= −12βi < ViVj > βj ≤ 0 (26)

where the metric in coupling constant space

Gij ≡ 2|z|4 < Vi(z, z̄)Vj(0, 0) > (27)

is positive for unitary theories on the world-sheet.



A rather straightforward analysis yields the following string analogue of the evo-
lution equation (10) [6]

∂tρ̃ = −{ρ̃, H}PB + βjGij
∂

∂pi
ρ̃ (28)

where in the two-dimensional black-hole example the couplings gi denote the prop-
agating ‘tachyon’ modes. The key point to notice here is that this equation has
the form (10),(11) which guarantees the existence of an “ageing” operator in non-
equilibrium quantum statistical mechanics, i.e., a microscopic arrow of time. This is
a consequence of the symmetry and reality properties of the Zamolodchikov metric
in coupling constant space for unitary world-sheet theories [12].

It may be useful to comment here on the precise meaning of the partial derivative
with respect to the zero mode of the renormalization scale. As stated above, this
denotes dependence on the covariant world-sheet area A, which occurs in the fixed
world-sheet area expectation values < . . . >. The integration over the Liouville field
in the fixed-area-constraint formalism (23) implies that C is a target space-time
action functional. For stringy σ-models it is known [46] that any form of the C-
theorem which is local in target space will yield anomalous-dimension-like terms on
the right-hand-side of (26), which are due to world-sheet infrared divergences. For
graviton GMN and dilaton Φ backgrounds they assume the form

γ(G,Φ) = − 3

16π2

α′

2
∇2(βΦ − βM

M + . . .) (29)

where the . . . indicate higher-order α′-corrections. Such anomalous dimension terms
spoil the monotonicity properties of the local C-function, even for unitary theories.
Fortunately, due to the fact that they are total target space-time derivatives, they are
absent[47] in the space-time integrated form of the C-theorem. Thus, the positivity
of the action functional (25) is guaranteed for unitary theories, in which case the
action C counts correctly the physical degrees of freedom of the system. Moreover,
this integrated form guarantees the existence in the associated flow equations of
second order derivatives with respect to the renormalization-group scale, which arise
from the usual functional derivatives of a string effective action with respect to the
background fileds/couplings [6, 10]. However, the existence of (dissipative) friction
terms, as a result of the non-critical nature of the underlying conformal field-theory
[6], implies the irreversibility of such a flow. This property applies in a fixed-genus
(sphere) computation. In higher genera there will, in general, be mixing of standard
matter states with ghosts circulating along the handles of the Riemann surface.
However, measurement in our effective theory cannot detect such effects directly.
Following the analysis of ref. [30], it is possible to project higher-genus effects
onto the lowest-genus Riemann surface (sphere), in such a way that the string loop
effects appear as extra renormalization counterterms on the world-sheet theory, not
included in a perturbative fixed-genus renormalization. Thus, in such a formalism
the lowest-genus effective theory can always be assumed unitary, and the effective
C-theorem is applicable [48].



When one resums over higher genera, the classical couplings gi become ‘quan-
tum operators’ ĝi, and the associated Poisson brackets become commutators. The
quantum version of (28) is [6]

∂tρ̃ = i[ρ̃,H] + iβiGij [g
j, ρ̃] (30)

From equation (26) one can construct an associated statistical entropy which is
essentially the exponential of C (25). It has been shown [6] that this quantity can
be expressed in terms of the reduced density matrix ρ̃ of the low energy subsystem
according to Boltzmann’s prescription

S = e−C = −Trρ̃lnρ̃ (31)

which for unitary theories varies monotonically along the renormalization group flow

Ṡ = βiGijβ
jS ≥ 0 (32)

We have argued in ref. [7, 11] that world-sheet instanton effects can be used
to describe qualitatively both higher-genus and global mode effects in the Wess-
Zumino black hole model. A rigorous treatment of this issue has not yet become
available, and it probably has to wait for a satisfactory matrix model formalism
[49] of black holes in string theory, where a summation over higher genera is per-
formed exactly2. The association of world-sheet instanton with higher-genus effects
is, however, supported by a study of the N = 2 topological Wess-Zumino theory
on a black-hole space-time background. Such models are believed [24] to describe
correctly the topological phase of the two-dimensional string, which is also reflected
in the black hole singularity itself [27, 51]. The connection with higher genera comes
from the conjecture of Mukhi and Vafa [52] that a c = 1 string theory resummed
over genera is expressed as a topological world-sheet Wess-Zumino model formulated
on a SL(2, R)/U(1) group manifold.

We are concerned next with the sense of the flow of the subsystem of the propa-
gating string modes. In ref. [7] we have established a flow of time which is opposite
to the conventional renormalization group flow. There is an unambiguous way of
determining the correct sense of the flow, associated with the fact that, according
to Zamolodchikov, there is an ‘thinning’ of physical degrees of freedom of the sys-
tem along the renormalization-group flow. In unitary theories, where the original
analysis of Zamolodchikov took place [12], the effective central charge counts cor-
rectly such degrees of freedom. This notion can probably be extended [53] even to
non-unitary theories. In our case, as we shall discuss below, the ‘bounce’ picture of
Liouville flow [54, 7] clearly provides a mathematically rigorous construction which
selects the direction of flow along which there is a ‘thinning ’ of degrees of freedom in

2For some attempts towards this direction see ref. [50], where a matrix model scenario for string
propagation on a fixed black hole geometry is presented.



the observable world: close to the starting point of the flow, in the topological string
phase, the delocalized modes are strongly coupled to the propagating string modes.
On the other hand, at the end of the flow, where flat space-time is approached
asymptotically, the topological modes decouple. The associated entropy production
(31) in such a picture, is interpreted as pertaining to the amount of information
carried by the ‘environment’ of the topological modes.

We now develop briefly the ‘bounce’ picture. Consider an N -point correlator of
‘tachyons’ in the above Liouville string. Its expression is [55]

< Vi1 . . . ViN >µ∝ (
∫

dAe−AA−s−1) < Vi1 . . . ViN >µ=0 (33)

where the subscript µ denotes world-sheet cosmological constant deformations, ap-
propriately modified in the black hole where µ is related to the black hole mass
[56]. The quantity s is a kinematic factor involving Liouville energies of the var-
ious operators. The quantity A is the covariant area of the world-sheet that sets
a renormalization scale [53], and has been introduced via the fixed-area constraint
(23). The A-integral is ultraviolet divergent if s is a positive integer, which is the
case in a two-dimensional black hole where scattering of tachyons off the black hole
results in an excitation of the latter to discrete string states [37]. The regularization
of the integral can be made by analytic continuation, representing it by the contour
integral depicted in fig. 1 [7, 10]. The contour of fig. 1 implies a ‘bounce’ [54, 7] of
the world-sheet (c.f. figure 2) area at the infrared fixed point (A→ ∞) towards the
ultraviolet one (A→ 0).

The bounce interpretation of the Liouville renormalization group is different from
the ordinary representation describing transitions among string vacua. The bounce
picture is in perfect agreement with the time reversal symmetry breaking Λ-transfor-
mation approach of Misra and Prigogine [20], if one identifies the two opposite
directions of time in fig. 1 with the Λ± branches. The bounce picture is supported
by explicit instanton computations in the dilute-gas approximation on the world
sheet, as discussed in [7, 11].

4 Quantum-Classical Correspondence within the

Renormalization Group Framework

In the previous section we have developed a deterministic flow of time, which
stems from working within an effectively fixed-genus σ-model. In this picture, higher
genus effects are collectively and qualitatively represented by world-sheet instanton
effects, that produce extra logarithmic scale dependences not appearing within the
conventional fixed-genus renormalization group analysis. However, from a formal



point of view, summation over higher genera leads to a natural quantization of
the target-space fields gi, and one loses the concept of a classical point in coupling
constant phase space that evolves determinstically. To include this feature we seek
states in this quantum-mechanical system that evolve ‘almost reversibly’ in time,
and therefore are the closest quantum counterparts to the classical points in the
σ-model background phase space. Given that the degree of irreversibility of an open
system is measured by the entropy production, the above states should correspomd
to minimum entropy production [57, 58]. Their time evolution follows classical
phase-space trajectories, which in our case express the usual renormalization-group
flow. In conventional quantum-mechanical treatments these states are called ‘pointer
states’. For instance, in the case of the harmonic oscillator, the pointer states are
identified with the conventional ‘coherent states’ [58]. The existence, as well as
the nature, of pointer states depends on the form of the interaction of the open
subsystem with the environment [59]. For instance, in a toy two-state spin system,
it can be shown that oscillatory pointer states appear at weak coupling with the
environment, while constant pointer states appear at very strong coupling. For
intermediate couplings there are no pointer states, but only a noisy background
[59].

It is the purpose of this section to address these issues for our system. As already
mentioned, a difference from the ordinary quantum-mechanical case appears because
the ‘phase space’ refers to background fields gi, and their conjugate momenta pi in
the target space of the string, where the index i includes the target-space coordinates.
As a preliminary to finding our pointer states we follow [58] and compute the linear
entropy production:

∂ts
l ≡ ∂t(Trρ̃− Trρ̃(g,p, t)2) = −∂tTrρ̃

2 (34)

in our framework. Using equation (30) it is straightforward to derive

∂ts
l = iT r([βiGij, ρ̃]g

j =

2 i T rρ̃2gi d

dt
Gijg

j − 2iT rρ̃gi d

dt
Gijρ̃g

j − 2iT rρ̃gi[Gij , ρ̃]β
j (35)

Using equation (20), we can express the last term in terms of the commutator
[Gij , e

−H ], which is non-zero as a result of the renormalization-group invariance of
βiGijβ

j, and the fact that d
dt
βi 6= 0 in any scheme. Choosing a scheme such that

[12] Gij = δij + O(g2), we observe that, for the case of (1, 1) deformations that we
are interested in, the last term is necessarily of order O[g6] and it is not dominant
in the weak-field gi << 1 approximation, which we assume for convenience. The
remaining terms can then be time-integrated to yield

sl(t) = i
∫ t

t0
dt(Trρ̃2gi d

dt
Gijg

j − iT rρ̃gi d

dt
Gij ρ̃g

j) (36)

Writing i d
dt
Gij as −[Gij , H ], and taking into account the fact that in the weak-field

limit the renormalization of Gij requires linear subtractions in the logarithmic scale



t = lnµ, one may make the replacement

[Gij , H ] ∝ −δij + . . . (37)

where the . . . indicate higher order corrections. Thus, the final result for the linear
entropy produced in the time interval 2∆t is

sl(2∆t) =
∫ t+∆t

t−∆t
dt(Trρ̃2giδijg

j − Trρ̃giδijTrρ̃g
j)(∆g)2 (38)

Were it not for the self-interaction Hamiltonian of the low-energy string-mode sys-
tem, the natural candidates for the pointer states would be the position eigenstates
in coupling-constant space, corresponding to background fields in the target space of
the string. The non-triviality of the Hamiltonian modifies this result by introducing
‘momentum’ uncertainties in coupling constant space. To see this, we may rewrite
the right-hand-side of (38) in the twin limit of weak field and weak coupling with
the environment, as

sl ≃
∫

2∆t
dt(< giδijg

j > − < gi > δij < gj >) =
∫

2∆t
dt < (gi− < gi >)2 > (39)

For the interaction Hamiltonian we use the matrix-model inverted harmonic oscil-
lator approximate Hamiltonian [49] which is supposed to describe in a closed form
the result of the resummation over world-sheet genera for a two-dimensional string,

H =
1

2
(p2 − q2) (40)

where q, p are related by a canonical collective coordinate transformation to the
matter tachyon field of the two-dimensional string theory and its conjugate momen-
tum respectively [49]. From our point of view, this change of variables corresponds
to a renormalization group choice, and hence our previous analysis applies. In par-
ticular, we can use the known solution of the inverted harmonic oscillator problem
to write (39) in the form

sl(2∆t) =
∫

2∆t
< ψ|[(q− < q >)cosht+ (p− < p >)sinht]2|ψ > (41)

where |ψ > denote the states of the inverted harmonic oscillator. It is understood
that any modification of the matrix model potential, e.g., of the form -m2

q2 which de-

scribes [50] tachyon propagation in the background of a string black hole of mass m,
has been omitted here, since such terms have been integrated out by the measure-
ment process which ‘sees’ only the propagating matter. The effect of the black hole
is the entropy production due to the non-zero coupling with the topological modes
of the string (of which one is the two-dimensional space-time graviton itself). In
this specific model one can explicitly verify (37) as follows: as already commented,
we can interpret the ‘coordinate’ q and the conjugate ‘momentum’ p as a specific



scheme choice. Unitarity of the σ model theory requires the following generic form
for the metric Gqq:

Gqq = (const)2 + (α)2q2 + . . . ; α ∈ R (42)

Using equation (40), the canonical commutation relation [q, p] = ih̄, and the repre-
sentation p = −ih̄ ∂

∂q
, it is straightforward to arrive at

[Gqq, H ] = −α2 +O[q
∂

∂q
] (43)

thus verifying equation (37).

We now remark that, for the inverted harmonic oscillator case, 2∆t can be taken
to be the infinite interval [−Λ,Λ], with Λ → ∞. The result of the time integration
then is proportional to

sl ∝ [(∆g)2 + (∆p)2] (44)

which is our final result that can be compared with the conventional harmonic
oscillator case [58]. The pointer states are found by minimizing the entropy sl.
Viewing the latter as a functional of (∆g)2 and of the product ∆gi∆pi ≥ h̄/2 (no
sum over i ), and minimizing (44) with respect to the ∆gi, we find that the states
of minimum entropy are characterized by

∆gi∆gi =
h̄

2
(45)

which is similar to the result of ref. [58], showing that the minimum-entropy-
producing initial states are minimum-uncertainty Gaussian wave-packets of the
inverted harmonic oscillator that describes the dynamics of the (quantum) two-
dimensional string.

In the case of the conventional harmonic oscillator, such Gaussian wave-packets
coincide with the Wigner coherent states. However, in the case of the inverted
harmonic oscilaltor, a thorough analysis [60] shows that Gaussian wave-packets are
different from the Wigner coherent states. The latter are not square-integrable,
though still localizable because they fall like q−1 for q → ∞, and can be obtained
by the action of the Weyl operators on energy eigenstates [60]. On the contrary, the
Gaussian wave-packet assumes the usual form

ψ(q, t = 0) = (b
√
π)−

1
2 exp(−q2/2b2) (46)

An interesting property of equation (46) is that the corresponding time-dependent
probability distribution |ψ(q, t)|2 retains its Gaussian shape under time evolution.
This result can be derived from the action of the Green function of the inverted



harmonic oscillator [60] on equation (46). The time evolution of the probability
distribution yields a time-dependent width

b̃2(t) = b2cosh2t+ b−2sinh2t (47)

We can also consider the scattering of a Gaussian wave-packet incident on the in-
verted oscillator potential, i.e., a Gaussian distribution in both q and p. As the
initial state at t = 0 we take [60]

ψ(q, 0) = (b
√
π)−

1
2 exp(−(q − q0)

2/2b2 + ip0x) (48)

Its time evolution is found again with the help of the appropriate Green function,
and the result for the probability density is

|ψ(q, t)|2 =
1

√
πb̃(t)

exp(−(q − q(t))2/b̃(t)2) (49)

where b̃(t) is given by (47), and q(t) = q0cosht+p0sinht is the classical trajectory of a
particle having energy E = 1

2
(p2

0−q2
0). Notice that the mean energy < ψ|H|ψ >= E−

(b2 − 1/b2)/4. It coincides with the energy E for minimum-uncertainty wavepackets
with b = 1 (in units of h̄ = 1), which is the case of the pointer states under
consideration. It is straightforward to see that the peak of the Gaussian distribution
(49) follows the classical trajectory exactly [60].

A more interesting feature that is directly relevant to our Markovian approach to
Liouville string is the effect of the environment, simulated by oscillators à la Caldeira
and Leggett [61], on the shape of the Gaussian distribution (46), viewed as an initial
pure state of the sub-system at t = 0. Assuming thermal equilibrium with the heat
bath of the environmental oscillators, the authors of ref. [61] simulated the coupling
to the environment by a temperature-dependent fluctuating non-conservatve force
F (t, T )

<< F (t, T )F (t′, T ) >>= 2ηkBTδ(t− t′) (50)

where << . . . >> denotes a statistical/thermal average, t denotes the time, kB is
Boltzmann’s constant, and η is a friction coefficient. The result of ref. [60] is that
under the influence of the heat-bath a pure initial state (46) evolves at time t to a
probability distribution for the particle, described by the diagonal element of the
density matrix, which is given exactly by the Gaussian [60]

ρ(q, q, t) =
1

√
πb̃(t, T )

exp(− q2

b̃(t, T )
2 ) (51)

where for a unit-mass and -frequency oscillator

b̃2(t, T ) = (
2sinhΩt

Ωe
η
2
t

)2{( b
2
)2(ΩcothΩt+

η

2
) + (

h̄

2b
)2 +

h̄η

2π

∫ νmax

0
dννcoth(

h̄ν

2kBT
)| e

η

2
t

sinhΩt

∫ t

0
dτe−

η

2
τ+iντsinhΩτ |2} = 2 << q2 >>(52)

with Ω ≡
√

1 + η2/4.



What is the meaning of this result in our framework? To answer this question it is
necessary to define a notion of “fine” thermodynamics in the sense of Fronteau [22],
which allows the definition of a phase-space-dependent ‘temperature’ T f(q, p, t) even
for systems outside thermal equilibrium. In the example considered by Fronteau
[22] the work done by a non-conservative force F acting on the system is given
infinitesimally by

dQf = Fdq (53)

and is related to the “fine” entropy Sf(p, q, t) and the “fine” temperature T f(q, p, t)
by the conventional thermodynamic relation, in infinitesimal form

dSf(q, p, t) =
dQf (q, p, t)

T f(q, p, t)
(54)

From section 2 and ref. [10] we recall that in our case the non-conservative forces
are given by

Fi(q) = Gijβ
j (55)

where Gij is the Zamolodchikov metric (27) in σ-model coupling constant space.
Using equation (32), and writing (54) in terms of differential rates, we can define a
“fine” temperature in our case

T f (g,p, t) ≡ S−1 = eCeff (g,t)−25 (56)

with C(g, t) the Zamolodchikov C-function (25), and the critical value 25 arises from
an appropriate choice of normalization conventions. In this way, a notion of “fine”
temperature is defined in non-critical strings, which measures the deviation from
conformal fixed points. Near the infrared fixed point on the world-sheet, where
Ceff → ∞ [10, 11], the topological phase of the string is approached [24], and
the “fine” temperature is infinite. Adapting the formalism of ref. [62], we find
that the uncertainty in σ-model coupling constant/field space diverges in this limit.
This implies the breakdown of a low-energy point-like field theory, which should
be expected in the topological phase. On the other hand, in the ultraviolet limit
Ceff → 25 and the theory approaches that of a conventional critical string. In this
case the unit of “fine” temperature is reached, and ‘thermal equilibrium’ is achieved.
This is in agreement with the law (54), because in this case, both δQf and δSf

vanish, since they are related to temporal changes in momentum and position in
phase-space, whilst T f is still finite for a free ‘particle’ with momentum p, being
related to its kinetic energy [22] 3

2
T f = p2/2m. We note at this stage that the

above definition of temperature as a deviation from conformal equilibrium in non-
critical strings is not new. It has appeared previously in the literature [63], when
topological defects on the world-sheet were considered. Our “fine” temperature,
which is a quantity defined in coupling-constant space, is related to the world-sheet
temperature of ref. [63] by a simple exponentiation,

T f = eCeff−25 ≡ eTws (57)

The physical reason behind this relation is the requirement of vanishing fine entropy
and heat-transfer in the critical string, as explained above.



Having defined a fine temperature, we can now interpret the result (51,52) in our
framework, by first replacing the equilibrium temperature T by the fine quantity
T f (56). Secondly, we take into account the results of ref. [50], according to which
the spatial coordinate q of the inverted harmonic oscillator potential can be related
by an appropriate canonical collective coordinate transformation to the massless
propagating ‘tachyon’ mode of the two-dimensional string theory. From our point of
view, such a transformation corresponds to a renormalization-scheme change, i.e., an
appropriate coordinate change in the coupling constant space of the two-dimensional
string. Thirdly, we recall that tachyon propagation in a two-dimensional black-hole
geometry is believed to be described by a modification of the inverted-oscillator
potential by anharmonic terms [50]

δV = −m2

2q2
+ . . . (58)

describing the topological string modes, where the . . . denote (an infinity of) possible
terms. Integrating out such terms provides a low-energy ‘observer’ measuring only
the localizable modes with the analogue of an ‘environment’, where the above de-
coherence results emerge. Given that the minimum-entropy-producing initial states
are Gaussian, whose nature is not affected by the environment, one can safely in-
terpret the result (51,52) as implying that the concept of a low-energy (observable)
Gaussian field theory mode survives the procedure of integrating out the topolog-
ical string modes in the two-dimensional black-hole string theory. The Gaussian
wave-packet (51) maintains its minimum uncertainty in coupling-constant space.
This should not be confused with the time-dependent modified uncertainty in po-
sition and momentum in target-space of a test string found in [11] as a result of a
time-varying minimum string length [64]. In the field space of the stringy σ-model,
the uncertainty in measurements of a field and its conjugate momentum, both re-
lated to pointer states in coupling-constant-space quantum mechanics, retains its
conventional form as in local field theory, unrenormalized by the Liouville mode.

It should be stressed that the above result, i.e., the emergence of a quantum
field theory as the low-energy limit of a matrix model (or, in more general terms,
of a resummed world-sheet σ-model theory), finds a consistent explanation in the
formalism of coupling-constant density-matrix mechanics. In the simple Drude-
model analogue example of ref. [6], which is argued to capture the essential physical
features of the realistic string situation, it was been found that the off-diagonal
terms of the density matrix in coupling space of the σ-model, ρ(gi, gj, t), behave like

ρ(gi, gj) ∝ e−Dt(gi−gj)2+... (59)

where D is a small coefficient, depending on the squares of the anomalous dimensions
αg (22) of the Liouville-dressed deformations gi

R. In our framework, the topological
string modes, which have been integrated out by the low-energy observer, play the
rôle of a continuously measuring ‘apparatus’, and the observed time flow is a result of



such a ‘measurement’ process. The ‘collapse of the wave-function’, i.e. the vanishing
of the off-diagonal terms (59) of the density matrix in coupling-constant space,
occurs at t → ∞, which in our framework is the ultraviolet fixed point. At that
point critical string theory is recovered and a fixed string background is achieved,
in the sense of a non-vanishing entry of only one of the diagonal elements of the
density matrix3. Away from this equilibrium point there are non-trivial interference
terms (59), expressing the quantum nature in the coupling-constant space of the
non-equilibrium physics. In this picture, critical string theory is identified with the
final result (t→ ∞) of the ‘measurement process’ induced by the topological modes
of the string 4.

The minimum-entropy-production nature of the Gaussian wave-packet of the in-
verted harmonic oscillator implies an almost reversible, deterministic trajectory in
coupling constant space for the resulting states/fields away from equilibrium. This
combines the classical deterministic nature of the renormalization group flow with
the quantum nature of the string backgrounds in the matrix model formalism, that
resums Riemann surfaces. In the above example, as well as in that of ref. [58], such
states arise naturally through decoherence effects associated with the interaction of
the quantum system with an ‘environment’. In the case of the black hole model,
as we discussed above, the environment is provided by the topological modes of
the string, which do not decouple, and whose interaction with the propagating low-
energy modes results in an irreversible flow of time. The pointer states that arise
through decoherence effects in the coupling constant space of the stringy σ-model
move almost reversibly with the renormalization group time, and in this way one
obtains a conventional quantum field theory (gi’s and pi’s ) in the target space of
the string.

This demonstration in the inverted harmonic oscillator approach appears to pos-
sess a deeper interpretation. We remind the reader that it was this model that
the geometric interpretation of the W∞ string symmetry as a coherence-preserving
target-space symmetry was given [13, 45]. The linear entropy is related to the area

3It should be understood that this picture would be modified by the action of exactly-marginal
deformations that induce uncertainties in a specific background choice. This is related to the well-
known string-vacuum degeneracy problem. It is hoped that truly non-perturbative string effects
will eventually lift this degeneracy, leading to a unique critical string vacuum, and hence to a single
non-zero entry in the string density matrix.

4This measurement process and the associated ‘collapse of the wavefunction’ phenomenon in
string coupling-constant space should not be confused with their analogues in the target space
of the string, discussed in ref. [6]. In that case one considers a density matrix for a test string
propagating in the non-trivial background gi. Its off-diagonal elements refer to spatially-separated
points in target space of the string, related to the above formalism in the way explained in ref. [7].
In that case, when many string particles are present, the exponent of the off-diagonal elements (59)
acquires a multiplicative factor N , the number of test strings, and the collapse time is diminished
significantly [5].



of the p and q phase space by [58]

sl = 1 − 1/A (60)

for Gaussian distributions, like the ones corresponding to our pointer states. In
the absence of black holes in space-time, the W∞ symmetries of the matrix model
guarantee the invariance of the two-dimensional phase-space area A under (target)
time evolution[13, 45]. Its time dependence (35) indicates the breaking of coherence
as expected from the fact that the W∞ symmetries mix the propagating low-energy
string modes with the higher-level string states which are delocalized and do not
decouple in the presence of a black hole [13, 6]. For the pointer states found above
this breaking of coherence is the softest possible one. This justifies the use of the
flat space-time matrix model in writing down the temporal evolution of the fields gi

in the weak coupling approximation.

The pointer states are the closest approximations to classical points in the string
coupling-constant phase space. Due to their minimal irreversibility, they are the
best approximations to the effective quantum field theories usually taken as the
low-energy limits of string theories. We note that the statistical entropy (31) is
not minimized by the pointer states, as can be easily seen by the fact that the
linear entropy sl (34) provides only a lower bound on the statistical entropy (31)[65].
This implies an overall cosmological time arrow, whilst in parallel allowing for the
emergence of almost-time-reversible local field theory structures, associated with
decoherence-induced pointer states in the coupling-constant space. In this way, we
have a rather elegant way of understanding how quantum field theory in target
space arises in Liouville strings. An interesting question is whether this is merely
an elegant formalism, or has some observable microscopic consequences. This may
be possible, as we argue in the following section.

5 Generic CPT Violation and Non-Conservation

of Angular Momentum

The above definition of time in string quantum gravity made it necessary to in-
troduce non-perturbative effects on the world sheet, such as instantons. In their
presence, certain charges cease to be conserved, as a result of logarithmic renormal-
ization scale dependences. Such a situation implies the non-commutativity of the
Hamiltonian operator with the respective charge operators on the world sheet. If
one defines a generalized CPT symmetry in such a way that this symmetry leaves
the mass of a string state invariant, but changes the sign of the charge, then it is
straightforward to argue that in our case the elevation of CPT symmetry to target
space fails in general. This is a heuristic argument, and one should really construct
a rigorous proof of such a stituation, which is not yet available.



However, the evolution of pure states into mixed ones, as a result of the entropy
increase (31) along the positive direction of time, implies the violation of CPT
symmetry as we now review in the context of a general analysis [16]. Let us make
the assumption that a CPT operator Θ̂ exists in target space, such that

ρ′in = Θ̂−1ρout

ρ′out = Θ̂ρin (61)

and the in and out density matrices are related through the superscattering operator
/S [3]

ρout = /Sρin

ρ′out = /Sρ′in
(62)

The following relation is a trivial consequence of the above equations

Θ̂ = /SΘ̂−1/S (63)

which implies that /S has an inverse. Clearly this cannot happen if there is evolution
of pure states into mixed ones and not vice versa, as implied by the monotonic
increase of the entropy (31). This proves the breaking of CPT symmetry in the
above framework.

In ref. [7] we have described non-factorisable (i.e. /S 6= SS†, where S is the
conventional S-matrix operator) contributions to the string /S-matrix, coming from
valleys between topological defects on the world sheet 5. This provides an explicit
demonstration of the non-existence of an inverse /S−1, and hence of induced CPT
violation in the target space of this effective string theory. It should be stressed,
however, that the above considerations cannot exclude the possibility of a some
weaker form of CPT invariance [16] which might cause violations of CPT symmetry
to be unobservable in an experimental apparatus. Such a situation falls beyond the
scope of the present talk, and in what follows we simply explore the possibility
that a detectable violation of CPT occurs, which we parametrize in a way suitable
for present experiments with neutral kaons and at future φ factories [68, 69], that
constitute the most sensitive probes in a search for violations of quantum mechanics
at the microscopic level. For more details we refer the reader to the literature
[15, 17, 19] and also to Huet’s talk at this meeting [18].

5Notice that, in that picture, the creation and annihilation of a target-space black hole is rep-
resented as a world-sheet monopole-anti-monopole pair [66]. Instantons induce transitions among
such configurations of different charge, the latter being proportional to the black hole mass. We
note that there is a formal analogy [7, 10] with the Quantum Hall fluids: in that case, instantons
in the respective Wess-Zumino models, describing the effective theories in ‘conductivity space’,
induce transitions among the transverse-conductivity plateaux [67].



Before proceeding with the parametrization of such possible phenomenological
effects, it is worth pointing out two important properties of our modification of
quantum mechanics due to stringy quantum gravity effects. The first is energy
conservation on the average, which follows from renormalizability of the world-sheet
theory, and the second is a generic violation of angular momentum conservation.
Both properties can easily be understood formally as follows. The renormalized
background couplings gi are assumed to be quantum operators, as a result of a
higher-genus resummation. This implies that the modified density matrix equation
(30) that describes the time evolution will be used [6].

Consider an operator K in this framework whose average is given by

<< K >>≡ Tr(ρ̃K) (64)

Its time evolution is given by

∂t << K >>=<< βiGij[g
j,K] >> + << ∂tK >> (65)

where we have used the fact that βiGij is a functional of gi only, and not of pi = δ
δgi .

If the operator K is the σ-model Hamiltonian (energy) then, using [gi,H] = βi as
well as the fact that the C-function is related to the string effective action that
generates string amplitudes, it is straightforward to derive [15, 11]

∂t << H >>= ∂t(
δβi

δgi
) = 0 (66)

as a result of the renormalizability of the σ-model, which implies that the couplings
gi and the associated β functions do not have any explicit scale dependence. This
property of energy conservation can be extended straightforwardly to many-particle
states.

The same is not true for the angular momentum operator, in target space dimen-
sions higher than two. In the context of the target-space effective field theory this
operator is defined as

Jαβ = XαPβ′Gββ′

(67)

where Greek indices denote target spatial components, and Gαβ is the metric tensor
in target space. The stress tensor is derived from the effective lagrangian

Tαβ =
δLeff

δGαβ

T0β =
δLeff

δG0β
(68)

and the target momenta can be defined from the effective theory stress tensor by
differentiating with respect to the G0β component of the metric (here the “0” com-
ponent refers to the Liouville time). The effective action is identified with the



Zamolodchikov C-function. By construction, the latter is renormalization-group
invariant, hence

(∂t + βi∂i)C = 0 (69)

Using the off-shell corollary of the C-theorem ∂iC = Gijβ
j [70, 47], and taking into

account the fact that the angular momentum operator is a functional of gi only,
as seen in equation (68), we observe that the g-commutator term in (65) vanishes,
leaving us with the following non-trivial result for the temporal dependence of the
angular momentum operator in this framework :

∂tJ
αβ = X [αGβ]γ δ[β

iGijβ
j]

δG0γ

6= 0 (70)

with [, ] denoting antisymmetrization. This expression is non-zero in general.

We can evaluate the above expression (70) in an explicit bosonic string back-
ground. Consider for instance the case of a maximally-symmetric space-time with
a constant dilaton:

RMN = GMNR ; Φ = const (71)

To lowest non-trivial order in α′ the graviton β-functions are just given by the Ricci
tensor

βG
MN = RMN + . . . (72)

whilst the quantity βiGijβ
j is given by

βiGijβ
j =

3

16π2
[R + . . .] (73)

It should be stressed that in the above formulae the target manifold includes the
Liouville/local renormalization scale φ as a time component [11]. We have ignored
for simplicity explicit matter fields, and concentrated on the gravitational sector.
Our formulae are easily adapted to the more general case with matter deformations.

It is easy to see that for a maximally-symmetric non-static universe the result
(70) becomes

∂tJ
αβ =

3

8π2
X [α∇β]∂tR (74)

We can see from (74) that the average Trρ̃∂tJ
αβ 6= 0 for time-varying curvatures,

e.g., expanding universes [11] with ∂tR(t) ≡ H(t)R(t), where H(t) is a Hubble
parameter. For such maximally-symmetric spaces the following operator relation
holds

∂t << Jαβ >>= − 3

8π2
H(t)R << Jαβ >> (75)

showing a decrease of the average angular momentum in an expanding universe. This
amounts to a derivation of Mach’s principle, analogous to that [71] in conventional
inflationary cosmology.



We can give a physical interpretation of the above results by making a direct
comparison with the expanding universe solution in non-critical string theory of ref.
[8]. It has been shown [9, 33] that this model can be directly put in the above
framework of Liouville strings by the identification of the Liouville field with the
target time coordinate X0. The relevant point here is that in the model of ref. [8]
in D > 3 target-space dimensions there is a local antisymmetric tensor field BMN =
−BNM , which is assumed to depend non-trivially on the ‘cosmic’ time t ≡ eX0

,
whilst the dilaton is linear in X0. In string theory there is an Abelian symmetry
that forces BMN to appear only through its field strength, HMNP = ∇[MBNP ]. For
D = 4 one can define an axion (pseudoscalar) field b by

HMNP = eΦǫMNPΣ∇Σb (76)

where the dilaton factor is due to scale invariance, and the time derivative is with
respect to t. The axion b may be viewed as the Goldstone boson of the target space
symmetry b→ b+ const [8]. A linear t dependence in b implies a time-independent
factor in HMNP . This has been interpreted in ref. [8] as a signal for spontaneous
breaking of Lorentz invariance (and hence of angular momentum as well). On the
other hand, time-translation invariance is not broken by b and therefore energy is
conserved in physical amplitudes derived from the non-critical string model of ref.
[8]. In contrast, a constant shift in the dilaton Φ → Φ + const. scales the overall
target-space Lagrangian, and hence the Planck constant, and so the dilaton cannot
be viewed as a Goldstone boson of a symmetry at a quantum level. Time-translation
invariance is formally restored if the correct string vacuum is a superposition of var-
ious ground states corresponding to different constant values Φ0 of the dilaton field.
This is the situation indicated by our two-dimensional toy example considered above.
In this case, since only s-wave four-dimensional configurations are described by this
model, the antisymmetric-tensor field strength vanishes trivially, and one cannot see
explicitly the breaking of Lorentz invariance. However, even in this case one can see
certain generic features of the above approach. For instance, as we discusssed in ref.
[10], near the infrared fixed point of the world-sheet the σ-model action is described
by a ‘topological version’ of the Wess-Zumino black hole model of ref. [27], which
contains a θ term that is nothing other than a discrete (topological) antisymmetric
tensor background. This term is essential in yielding instanton deformations with
finite world-sheet action [72], and thus capable of breaking conformal invariance and
thereby inducing time flow. Moreover, the coupling of this θ term is proportional
to the instanton-renormalized level parameter kR(t) of the topological Wess-Zumino
model [7, 10], related to the integration over topological modes. The latter contains
logarithmic scale (Liouville time) dependences, which are assumed to exponentiate
beyond the dilute gas approximation, thereby leading to an exponential Liouville-
dependence (i.e. linear in the ‘cosmic time’ t) of the antisymmetric tensor coupling,
exactly as required for a spontaneous breaking of Lorentz invariance, but not of
time-translation invariance. Moreover, in the two-dimensional black-hole example,
a constant shift in the dilaton field corresponds to a change in the black-hole mass.
Our ground state is assumed to be a foamy superposition of various microscopic



black holes, corresponding to various constant shifts in the dilaton field. From a
world-sheet point of view, it corresponds to a Kosterlitz-Thouless plasma (Coulomb
gas) of various monopole charges [66]. When averaging over such states in a quantum
theory of gravity, as we do in (66), time-translation invariance is restored and energy
is conserved on the average, in agreement with our more general result stemming
from the renormalizability of the underlying σ-model.

It should be stressed that the above physical picture appears specific to four di-
mensions. If it is correct in a full four-dimensional stringy model of space-time
foam, it leads to severe restrictions on the Liouville scale-dependence of the an-
tisymmetric tensor backgrounds. It would be nice to prove that this feature is a
result of ‘integrating out’ topological (global) degrees of freedom of the string that
cannot be measured by local scattering experiments, in much the same way as in
the two-dimensional (s-wave four-dimensional) example. At this stage this is only
a conjecture, given that a realistic four-dimensional space-time foamy configuration
is not known, at least to the same level of precision and mathematical exactness as
the two-dimensional Wess-Zumino black hole case [27].

Before proceeding, we mention another important property, namely the conserva-
tion of total probability:

∂t

∫

dpidg
iTrρ̃ =

∫

dgidpi
∂

∂pi
ρ̃Gjiβ

j = 0 (77)

if one assumes that the momentum-boundary terms vanish. This does not imply
that the coupling constant space has no boundary. On the contrary, it is believed
that the latter is a non-simply connected manifold, if a topological interpretation in
terms of Morse theory is to be given [73].

6 Application to the Neutral Kaon System

We are now well equipped to discuss the phenomenology of violations of quantum
mechanics in the above framework. The formalism of [4] will be adopted. Below,
we describe briefly the formalism [4, 15] for a discussion of the possible modification
of quantum mechanics and violation of CPT in the neutral kaon system, which is
among the most sensitive microscopic laboratories for studying these possibilities.
In the normal quantum-mechanical formalism, the time-evolution of a neutral kaon
density matrix is given by

∂tρ = −i(Hρ− ρH†) (78)

where the Hamiltonian takes the following form in the (K0, K
0
) basis:

H =

(

(M + 1
2
∆M) − 1

2
i(Γ + 1

2
∆Γ) M∗

12 − 1
2
iΓ∗

12

M12 − 1
2
iΓ12 (M − 1

2
∆M) − 1

2
i(Γ − 1

2
∆Γ)

)

(79)



The non-hermiticity of H reflects the process of K decay: an initially-pure state
evolving according to (78) and (79) remains pure.

In order to discuss the possible modification of this normal quantum-mechanical
evolution, and allow for the possibility of CPT violation, it is convenient to rewrite
[15] (78) and (79) in a Pauli σ-matrix basis [4], introducing components ρα of the
density matrix:

ρ = 1/2ρασα (80)

which evolves according to
∂tρα = hαβρβ (81)

with

hαβ ≡











Imh0 Imh1 Imh2 Imh3

Imh1 Imh0 −Reh3 Reh2

Imh2 Reh3 Imh0 −Reh1

Imh3 −Reh2 Reh1 Imh0











(82)

It is easy to check that at large times ρ takes the form

ρ ≃ e−ΓLt

(

1 ǫ∗

ǫ |ǫ|2
)

(83)

where ǫ is given by

ǫ =
1
2
iImΓ12 − ImM12

1
2
∆Γ − i∆M

(84)

in the usual way.

A modification of quantum mechanics of the form discussed in section 3 can be
introduced by modifying equation (81) to become

∂tρα = hαβρβ + /hαβρβ (85)

The form of /hαβ is determined if we assume probability and energy conservation, as
proved in the string context in section 3, and that the leading modification conserves
strangeness:

/hαβ =











0 0 0 0
0 0 0 0

0 0 − 2α − 2β
0 0 − 2β − 2γ











(86)

It is easy to solve the 4 × 4 linear matrix equation (85) in the limits of large time:

ρL ∝







1
− 1

2
i(ImΓ12+2β)−ImM12

1
2
∆Γ+i∆M

1
2
i(ImΓ12+2β)−ImM12

1
2
∆Γ−i∆M

|ǫ|2 + γ
∆Γ

− 4βImM12(∆M/∆Γ)+β2

1
4
∆Γ2+∆M2





 (87)



and of short time:

ρS ∝




|ǫ|2 + γ
|∆Γ|

− −4βImM12(∆M/∆Γ)+β2

1
4
∆Γ2+∆M2 ǫ− iβ

∆Γ
2

−i∆M

ǫ∗ + iβ
∆Γ

2
+i∆M

1



 (88)

We note that the density matrix (87) for KL is mixed to the extent that the param-
eters β and γ are non-zero. It is also easy to check [15] that the parameters α, β
and γ all violate CPT , in accord with the general argument of [16], and consistent
with the string analysis mentioned earlier in this section.

Experimental observables O can be introduced [4, 15] into this framework as
matrices, with their measured values being given by

< O >= Tr(Oρ) (89)

Examples are the K to 2π and 3π decay observables

O2π =

(

0 0
0 1

)

; O3π = (0.22)

(

1 0
0 0

)

(90)

and the semileptonic decay observables

Oπ−l+ν =

(

1 1
1 1

)

Oπ+l−ν =

(

1 − 1
−1 1

)

(91)

A quantity of interest is the difference between the KL to 2π and KS to 3π decay
rates [15]:

δR ≡ R2π −R3π =
8β

|∆Γ| |ǫ|sinφǫ (92)

where RL
2π ≡ Tr(O2πρL), and RS

3π ≡ Tr(O3πρS)/0.22, and the prefactors are de-
termined by the measured [74] branching ratio for KL → 3π0. (Strictly speaking,
there should be a corresponding prefactor of 0.998 in the formula (90) for the O2π

observable.)

Using (91), one can calculate the semileptonic decay asymmetry [15]

δ ≡ Γ(π−l+ν) − Γ(π+l−ν)

Γ(π−l+ν) + Γ(π+l−ν)
(93)

in the long- and short-lifetime limits:

δL = 2Re[ǫ(1 − iβ

ImM12
)]

δS = 2Re[ǫ(1 +
iβ

ImM12

)] (94)



The difference between these two values

δδ ≡ δL − δS = − 8β

|∆Γ|
sinφǫ

√

1 + tan2 φǫ

= − 8β

|∆Γ|sinφǫcosφǫ (95)

with tanφǫ = (2∆M)/∆Γ, is a signature of CPT violation that can be explored at
the CPLEAR and DAφNE facilities [68, 69].

We have used [15] the latest experimental values of R2π and R3π to bound δR, and
the latest experimental values of δL,S to bound δδ, expressing the results as contours
in the (β, γ) plane [15]. In our formalism, the usual CP -violating parameter ǫ is
given by [15]

|ǫ| = − 2β

|∆Γ|sinφǫ +

√

√

√

√

4β2

|∆Γ|2 − γ

|∆Γ| +RL
2π (96)

On the basis of this preliminary analysis, it is safe to conclude that

| β
∆Γ

| <∼ 10−4 to 10−3 ; | γ
∆Γ

| <∼ 10−6 to 10−5 (97)

In addition to more precise experimental data, what is also needed is a more complete
global fit to all the available experimental data, including those at intermediate
times, which are essential for bounding α, and may improve our bounds (97) on β
and γ [15, 17, 19]. We now give a brief account of the intermediate-time formalism.
As a first step, we consider a perturbative ansatz for the density matrix elements ρij ,
i, j = 1, 2 that appear in the system of equations (85) after a (convenient) change

of basis to K1,2 ≡
√

1
√

2(K0 ∓K
0
) [4, 15]. We write [17]

ρij(t) = ρ
(0)
ij + ρ

(1)
ij + . . . (98)

where ρ
(k)
ij are polynomials in α, β, γ and |ǫ| of degree k :

ρ
(k)
ij ≡ αPαβPβγPγ |ǫ|Pǫ ; Pα + Pβ + Pγ + Pǫ = k (99)

with the initial condition of having a pureK0 state, i.e., ρ0
ij(0) = 1

2
, ρk

ij(0) = 0, k ≥ 1.
The ansatz (98) leads to the following iterative system of differential equations,
describing the time evolution of the density matrix of the neutral-kaon system at
arbitrary time intervals [17] :

d

dt
[eAtρ

(k)
ij (t)] = eAt

∑

kl 6=ij

ρ
(k−1)
kl (t) (100)

where A is a generic factor that can be expressed in terms of known data of the
neutral-kaon system [17]. In the long and short time limits one recovers the bounds
(97) of β and γ . On the other hand, a fit to presently available intermediate time
data from two-pion decays [75] can place more stringent bounds on these quantities



[17], confirming that the standard CP -violation (96), observed so far, is mainly
quantum mechanical in origin. Moreover, an upper bound on the quantity α can
also be placed by such fits,

| α
∆Γ

| <∼ 2 × 10−3 (101)

although more stringent bounds can be placed by a study of φ-decays at a φ-factory
[69, 18, 19].

A concrete phenomenological consequence of the CPT -violation will be a shift δφ
in the minimum of the time-dependent semileptonic decay asymmetry δ(t) (93) as
a function of time t. A preliminary estimate of this shift, using the bound (101)
yields [17]

δφ <∼ 6 × 10−3 (102)

and we expect this range to be probed in the foreseeable future.

We cannot resist pointing out that the bounds (97) are quite close to

O(ΛQCD/MP )mK ≃ 10−19GeV (103)

which is perhaps the largest magnitude that any such CPT - and quantum-mechanics-
violating parameters could conceivably have. Since any such effects are associated
with topological string states that have masses of order MP , we expect them to be
suppressed by some power of 1/MP . This expectation is supported by the analogy
with the Feynman-Vernon model of quantum friction [76], in which coherence is
suppressed by some power of the unobserved oscillator mass or frequency. If the
CPT - and quantum-mechanics-violating parameters discussed in this section are
suppressed by just one power of MP , they may be accessible to the next round of
experiments with CPLEAR and/or DAφNE [68, 69].
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Figure Captions

Figure 1 - Contour of integration in the analytically-continued (regularized) ver-
sion of Γ(−s) for s ∈ Z+. This is known in the literature as the Saalschutz contour,
and has been used in conventional quantum field theory to relate dimensional regu-
larization to the Bogoliubov-Parasiuk-Hepp-Zimmermann renormalization method.

Figure 2 - Schematic repesentation of the evolution of the world-sheet area as
the renormalization group scale moves along the contour of fig. 1.
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