654 research outputs found

    A Superheated Droplet Detector for Dark Matter Search

    Get PDF
    We discuss the operation principle of a detector based on superheated droplets of Freon-12 and its feasibility for the search of weakly interacting cold dark matter particles. In particular we are interested in a neutralino search experiment in the mass range from 10 to 10^4 GeV/c^2 and with a sensitivity of better than 10^-2 events/kg/d. We show that our new proposed detector can be operated at ambient pressure and room temperature in a mode where it is exclusively sensitive to nuclear recoils like those following neutralino interactions, which allows a powerful background discrimination. An additional advantage of this technique is due to the fact that the detection material, Freon-12, is cheap and readily available in large quantities. Moreover we were able to show that piezoelectric transducers allow efficient event localization in large volumes.Comment: 15 pages LATEX; 11 figures on request from [email protected] submitted to Nuclear Instruments and Methods

    Is nonperturbative inflatino production during preheating a real threat to cosmology?

    Get PDF
    We discuss toy models where supersymmetry is broken due to non-vanishing time-varying vacuum expectation value of the inflaton field during preheating. We discuss the production of inflatino the superpartner of inflaton due to vacuum fluctuations and then we argue that they do not survive until nucleosynthesis and decay along with the inflaton to produce a thermal bath after preheating. Thus the only relevant remnant is the helicity \pm 3/2 gravitinos which can genuinely cause problem to nucleosynthesis.Comment: 10 pages, Updates to match the accepted version in Phys. Rev.

    Accelerated expansion of the universe driven by tachyonic matter

    Get PDF
    It is an accepted practice in cosmology to invoke a scalar field with potential V(ϕ)V(\phi) when observed evolution of the universe cannot be reconciled with theoretical prejudices. Since one function-degree-of-freedom in the expansion factor a(t)a(t) can be traded off for the function V(ϕ)V(\phi), it is {\it always} possible to find a scalar field potential which will reproduce a given evolution. I provide a recipe for determining V(ϕ)V(\phi) from a(t)a(t) in two cases:(i) Normal scalar field with Lagrangian L=(1/2)∂aϕ∂aϕ−V(ϕ){\cal L} = (1/2)\partial_a\phi \partial^a\phi - V(\phi) used in quintessence/dark energy models. (ii) A tachyonic field with Lagrangian L=−V(ϕ)[1−∂aϕ∂aϕ]1/2{\cal L} = -V(\phi) [ 1- \partial_a\phi \partial^a\phi]^{1/2} , motivated by recent string theoretic results. In the latter case, it is possible to have accelerated expansion of the universe during the late phase in certain cases. This suggests a string theory based interpretation of the current phase of the universe with tachyonic condensate acting as effective cosmological constant.Comment: 4 pages; uses revtex

    Unusual morphologies and the occurrence of pseudomorphs after ikaite (CaCO3‱6H2O) in fast growing, hyperalkaline speleothem

    Get PDF
    Unusual speleothem, associated with hyperalkaline (pH>12) groundwaters have formed within a shallow, abandoned railway tunnel at Peak Dale, Derbyshire, UK. The hyperalkaline groundwaters are produced by the leaching of a thin layer (<2 m) of old lime kiln waste above the soil-bedrock surface above the tunnel by rainwater. This results in a different reaction and chemical process to that more commonly associated with the formation of calcium carbonate speleothems from Ca-HCO3-type groundwaters and degassing of CO2. Stalagmites within the Peak Dale tunnel have grown rapidly (averaging 33 mm y-1), following the closure of the tunnel 70 years ago. They have an unusual morphology comprising a central sub-horizontally-laminated column of micro- to nano-crystalline calcium carbonate encompassed by an outer sub-vertical assymetric ripple laminated layer. The stalagmites are largely composed of secondary calcite forming pseudomorphs (<1 mm) which we believe to be predominantly after the ‘cold climate’ calcium carbonate polymorph, ikaite (calcium carbonate hexahydrate: CaCO3‱6H2O), with minor volumes of small (<5 ÎŒm) pseudomorphs after vaterite. The tunnel has a near constant temperature of 8-9°C which is slightly above the previously published crystallisation temperatures for ikaite (<6°C). Analysis of a stalagmite actively growing at the time of sampling, and preserved immediately within a dry nitrogen cryogenic vessel, indicates that following crystallisation of ikaite, decomposition to calcite occurs rapidly, if not instantaneously. We believe this is the first occurrence of this calcium carbonate polymorph observed within speleothem

    Decoherence and CPT Violation in a Stringy Model of Space-Time Foam

    Full text link
    I discuss a model inspired from the string/brane framework, in which our Universe is represented as a three brane, propagating in a bulk space time punctured by D0-brane (D-particle) defects. As the D3-brane world moves in the bulk, the D-particles cross it, and from an effective observer on D3 the situation looks like a ``space-time foam'' with the defects ``flashing'' on and off (``D-particle foam''). The open strings, with their ends attached on the brane, which represent matter in this scenario, can interact with the D-particles on the D3-brane universe in a topologically non-trivial manner, involving splitting and capture of the strings by the D0-brane defects. Such processes are described by logarithmic conformal field theories on the world-sheet. Physically, they result in effective decoherence of the string matter on the D3 brane, and as a result, of CPT Violation, but of a type that implies an ill-defined nature of the effective CPT operator. Due to electric charge conservation, only electrically neutral (string) matter can exhibit such interactions with the D-particle foam. This may have unique, experimentally detectable, consequences for electrically-neutral entangled quantum matter states on the brane world, in particular the modification of the pertinent EPR Correlation of neutral mesons in a meson factory.Comment: 41 pages Latex, five eps figures incorporated. Uses special macro

    Archaeological Landscapes during the 10–8 ka Lake Stanley Lowstand on the Alpena‐Amberley Ridge, Lake Huron

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136243/1/gea21590.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136243/2/gea21590_am.pd

    Correlated Hybrid Fluctuations from Inflation with Thermal Dissipation

    Full text link
    We investigate the primordial scalar perturbations in the thermal dissipative inflation where the radiation component (thermal bath) persists and the density fluctuations are thermally originated. The perturbation generated in this model is hybrid, i.e. it consists of both adiabatic and isocurvature components. We calculate the fractional power ratio (SS) and the correlation coefficient (cos⁡Δ\cos\Delta) between the adiabatic and the isocurvature perturbations at the commencing of the radiation regime. Since the adiabatic/isocurvature decomposition of hybrid perturbations generally is gauge-dependent at super-horizon scales when there is substantial energy exchange between the inflaton and the thermal bath, we carefully perform a proper decomposition of the perturbations. We find that the adiabatic and the isocurvature perturbations are correlated, even though the fluctuations of the radiation component is considered uncorrelated with that of the inflaton. We also show that both SS and cos⁡Δ\cos \Delta depend mainly on the ratio between the dissipation coefficient Γ\Gamma and the Hubble parameter HH during inflation. The correlation is positive (cos⁡Δ>0\cos\Delta > 0) for strong dissipation cases where Γ/H>0.2\Gamma/H >0.2, and is negative for weak dissipation instances where Γ/H<0.2\Gamma/H <0.2. Moreover, SS and cos⁡Δ\cos \Delta in this model are not independent of each other. The predicted relation between SS and cos⁡Δ\cos\Delta is consistent with the WMAP observation. Other testable predictions are also discussed.Comment: 18 pages using revtex4, accepted for publication in PR

    Scaling Solutions and reconstruction of Scalar Field Potentials

    Get PDF
    Starting from the hypothesis of scaling solutions, the general exact form of the scalar field potential is found. In the case of two fluids, it turns out to be a negative power of hyperbolic sine. In the case of three fluids the analytic form is not found, but is obtained by quadratures.Comment: 5 pages, 2 figures, some changes in references and figures caption

    Probing mSUGRA via the Extreme Universe Space Observatory

    Full text link
    An analysis is carried out within mSUGRA of the estimated number of events originating from upward moving ultra-high energy neutralinos that could be detected by the Extreme Universe Space Observatory (EUSO). The analysis exploits a recently proposed technique that differentiates ultra-high energy neutralinos from ultra-high energy neutrinos using their different absorption lengths in the Earth's crust. It is shown that for a significant part of the parameter space, where the neutralino is mostly a Bino and with squark mass ∌1\sim 1 TeV, EUSO could see ultra-high energy neutralino events with essentially no background. In the energy range 10^9 GeV < E < 10^11 GeV, the unprecedented aperture of EUSO makes the telescope sensitive to neutralino fluxes as low as 1.1 \times 10^{-6} (E/GeV)^{-1.3} GeV^{-1} cm^{-2} yr^{-1} sr^{-1}, at the 95% CL. Such a hard spectrum is characteristic of supermassive particles' NN-body hadronic decay. The case in which the flux of ultra-high energy neutralinos is produced via decay of metastable heavy particles with uniform distribution throughout the universe is analyzed in detail. The normalization of the ratio of the relics' density to their lifetime has been fixed so that the baryon flux produced in the supermassive particle decays contributes to about 1/3 of the events reported by the AGASA Collaboration below 10^{11} GeV, and hence the associated GeV gamma-ray flux is in complete agreement with EGRET data. For this particular case, EUSO will collect between 4 and 5 neutralino events (with 0.3 of background) in ~ 3 yr of running. NASA's planned mission, the Orbiting Wide-angle Light-collectors (OWL), is also briefly discussed in this context.Comment: Some discussion added, final version to be published in Physical Review
    • 

    corecore