115 research outputs found

    Measurement of Polycyclic Aromatic Hydrocarbons (PAHs) on Indoor Materials: Method Development

    Get PDF
    Wildfire smoke penetrates indoors, and polycyclic aromatic hydrocarbons (PAHs) in smoke may accumulate on indoor materials. We developed two approaches for measuring PAHs on common indoor materials: (1) solvent-soaked wiping of solid materials (glass and drywall) and (2) direct extraction of porous/fleecy materials (mechanical air filter media and cotton sheets). Samples are extracted by sonication in dichloromethane and analyzed with gas chromatography–mass spectrometry. Extraction recoveries range from 50–83% for surrogate standards and for PAHs recovered from direct application to isopropanol-soaked wipes, in line with prior studies. We evaluate our methods with a total recovery metric, defined as the sampling and extraction recovery of PAHs from a test material spiked with known PAH mass. Total recovery is higher for “heavy” PAHs (HPAHs, 4 or more aromatic rings) than for “light” PAHs (LPAHs, 2–3 aromatic rings). For glass, the total recovery range is 44–77% for HPAHs and 0–30% for LPAHs. Total recoveries from painted drywall ar

    Investigating CO2 Removal by Ca- and Mg-based Sorbents with Application to Indoor Air Treatment

    Get PDF
    Indoor carbon dioxide (CO 2 ) levels serve as an indicator of ventilation sufficiency in relation to metabolic effluents. Recent evidence suggests that elevated CO 2 exposure (with or without other bioeffluents) may cause adverse cognitive effects. In shelter-in-place (SIP) facilities, indoor CO 2 levels may become particularly elevated. This study evaluates four low-cost alkaline earth metal oxides and hydroxides as CO 2 sorbents for potential use in indoor air cleaning applications. Sorbents studied were MgO, Mg(OH) 2 , Ca(OH) 2 and commercially available soda lime. Uncarbonated sorbents characterized with nitrogen adsorption porosimetry showed BET surface areas in the 5.6–27 m 2 /g range. Microstructural analyses, including X-ray diffraction, thermogravimetric analysis and scanning electron microscopy confirmed the carbonation mechanisms and extent of sorption under environmental conditions typical of indoor spaces. Ca-based sorbents demonstrated higher extent of carbonation than Mg-based sorbents. Laboratory parameterizations, including rate constants ( k ) and carbonation yields ( y ), were applied in material balance models to assess the CO 2 removal potential of Ca-based sorbents in three types of indoor environments. Soda lime ( k = [2.2–3.6] × 10 −3 m 3 mol CO 2 −1 h −1 , y = 0.49–0.51) showed potential for effective use in SIP facilities. For example, CO 2 exposure in a modeled SIP facility could be reduced by 80% for an 8-h sheltering interval and to levels below 5000 ppm for an 8-h period with a practically sized air cleaner. Predicted effectiveness was more modest for bedrooms and classroom

    Experimental Evaluations of the Impact of an Additive Oxidizing Electronic Air Cleaner on Particles and Gases

    Get PDF
    Electronic air cleaning (EAC) technologies have garnered significant attention for use in buildings. Many EAC technologies rely on the addition of reactive constituents to indoor air to react with gas-phase compounds, enhance particle deposition, and/or inactivate microorganisms. However, limited data are available on the efficacy of many EAC technologies and their potential to form chemical byproducts during operation. Here we experimentally evaluate the indoor air quality impacts, specifically targeting particles and gases but not microbial constituents, of a commercially available additive oxidizing EAC that generates positive and negative ions and hydrogen peroxide (H2O2). Tests were conducted in a large unoccupied test chamber in Chicago, IL and an unoccupied laboratory in Portland, OR under a combination of natural conditions (i.e., without pollutant injection) and perturbation conditions (i.e., with pollutant injection and decay). A combination of integrated and time-resolved measurements was used across both test locations. Chamber tests at lower airflow rates demonstrated that operation of the EAC: (i) had no discernible impact on particle concentrations or particle loss rates, with estimated clean air delivery rates (CADRs) for various particle measures less than Âą10 m3/h, (ii) was associated with apparent decreases in some volatile organic compounds (VOCs) and increases in other VOCs and aldehydes, especially acetaldehyde, although a combination of high propagated uncertainty, limitations in test methods (e.g., lack of replicates), and variability between repeated tests limit what quantitative conclusions can be drawn regarding gas-phase organics; (iii) did generate H2O2, assessed using a crude measure, and (iv) did not generate ozone (O3). Laboratory tests at higher airflow rates, which involved injection and decay of particles and a single VOC (limonene), both simultaneously and separately, demonstrated that: (i) pollutant loss rates for both particles and limonene were slightly lower with the EAC on compared to off, yielding slightly negative pollutant removal efficiencies (albeit largely within propagated uncertainty) and (ii) there was a change in observed concentrations of one potential limonene degradation product, m/z 59 (putatively identified as acetone), with steady-state levels increasing from 10 ppb (air cleaner off) to 15 ppb (air cleaner on). No increases or decreases beyond measurement uncertainty were observed for other analyzed gaseous limonene degradation products. Overall, both chamber and laboratory tests demonstrated negligible effectiveness of this device at the test conditions described herein for removing particles and mixed results for VOCs, including decreases in some VOCs, no discernible differences in other VOCs, and apparent increases in other compounds, especially lower molecular weight aldehydes including acetaldehyde

    A Novel VOC Breath Tracer Method to Evaluate Indoor Respiratory Exposures in the Near- and far-fields; implications for the spread of respiratory viruses

    Get PDF
    Background Several studies suggest that far-field transmission (\u3e6 ft) explains a significant number of COVID-19 superspreading outbreaks. Objective Therefore, quantifying the ratio of near- and far-field exposure to emissions from a source is key to better understanding human-to-human airborne infectious disease transmission and associated risks. Methods In this study, we used an environmentally-controlled chamber to measure volatile organic compounds (VOCs) released from a healthy participant who consumed breath mints, which contained unique tracer compounds. Tracer measurements were made at 0.76 m (2.5 ft), 1.52 m (5 ft), 2.28 m (7.5 ft) from the participant, as well as in the exhaust plenum of the chamber. Results We observed that 0.76 m (2.5 ft) trials had ~36–44% higher concentrations than other distances during the first 20 minutes of experiments, highlighting the importance of the near-field exposure relative to the far-field before virus-laden respiratory aerosol plumes are continuously mixed into the far-field. However, for the conditions studied, the concentrations of human-sourced tracers after 20 minutes and approaching the end of the 60-minute trials at 0.76 m, 1.52 m, and 2.28 m were only ~18%, ~11%, and ~7.5% higher than volume-averaged concentrations, respectively. Significance This study suggests that for rooms with similar airflow parameters disease transmission risk is dominated by near-field exposures for shorter event durations (e.g., initial 20–25-minutes of event) whereas far-field exposures are critical throughout the entire event and are increasingly more important for longer event durations

    Bioaerosol Deposition on an Air-Conditioning Cooling Coil

    Get PDF
    This study is concerned with the role of a fin-and-tube heat exchanger in modifying microbial indoor air quality. Specifically, depositional losses of ambient bioaerosols and particles onto dry (not cooled) and wet (cool) coil surfaces were measured for different airspeeds passing through the test coil. Total, bacterial and fungal DNA concentrations in condensate water produced by a wet coil were also quantified by means of fluorescent dsDNA-binding dye and qPCR assays. Results revealed that the deposition of bioaerosols and total particles is substantial on coil surfaces, especially when wet and cool. The average deposition fraction was 0.14 for total DNA, 0.18 for bacterial DNA and 0.22 for fungal DNA on the dry coil, increasing to 0.51 for total DNA, 0.50 for bacterial DNA and 0.68 for fungal DNA on the wet coil. Overall, as expected, deposition fractions increased with increasing particle size and increasing airspeed. Deposited DNA was removed from the cooling coil surfaces through the flow of condensing water at a rate comparable to the rate of direct deposition from air. A downward trend of bacterial and fungal DNA measured in condensate water over time provides suggestive evidence of biological growth on heat exchangers during nonoperational times of a ventilation system. This investigation provides new information about bioaerosol deposition onto a conventional fin-and-tube cooling coil, a potentially important factor influencing indoor exposure to microbial aerosols in air-conditioned buildings

    Home Energy-Efficiency Retrofits

    Get PDF

    Monitored Indoor Environmental Quality of a Mass Timber Office Building: A Case Study

    Get PDF
    A broad range of building performance monitoring, sampling, and evaluation was conducted periodically after construction and spanning more than a year, for an occupied office building constructed using mass timber elements such as cross-laminated timber (CLT) floor and roof panels, as well as glue-laminated timber (GLT) beams and columns. This case study contributes research on monitoring indoor environmental quality in buildings, describing one of the few studies of an occupied mass timber building, and analyzing data in three areas that impact occupant experience: indoor air quality, bacterial community composition, and floor vibration. As a whole, the building was found to perform well. Volatile organic compounds (VOCs), including formaldehyde, were analyzed using multiple methods. Formaldehyde was found to be present in the building, though levels were below most recommended exposure limits. The source of formaldehyde was not able to be identified in this study. The richness of the bacterial community was affected by the height of sampling with respect to the floor, and richness and composition was aected by the location within the building. Floor vibration was observed to be below recognized human comfort thresholds

    Vision in high-level football officials

    Get PDF
    YesOfficiating in football depends, at least to some extent, upon adequate visual function. However, there is no vision standard for football officiating and the nature of the relationship between officiating performance and level of vision is unknown. As a first step in characterising this relationship, we report on the clinically-measured vision and on the perceived level of vision in elite-level, Portuguese football officials. Seventy-one referees (R) and assistant referees (AR) participated in the study, representing 92% of the total population of elite level football officials in Portugal in the 2013/2014 season. Nine of the 22 Rs (40.9%) and ten of the 49 ARs (20.4%) were international-level. Information about visual history was also gathered. Perceived vision was assessed using the preference-values-assigned-to-global-visual-status (PVVS) and the Quality-of-Vision (QoV) questionnaire. Standard clinical vision measures (including visual acuity, contrast sensitivity and stereopsis) were gathered in a subset (n = 44, 62%) of the participants. Data were analysed according to the type (R/AR) and level (international/national) of official, and Bonferroni corrections were applied to reduce the risk of type I errors. Adopting criterion for statistical significance of p<0.01, PVVS scores did not differ between R and AR (p = 0.88), or between national- and international-level officials (p = 0.66). Similarly, QoV scores did not differ between R and AR in frequency (p = 0.50), severity (p = 0.71) or bothersomeness (p = 0.81) of symptoms, or between international-level vs national-level officials for frequency (p = 0.03) or bothersomeness (p = 0.07) of symptoms. However, international-level officials reported less severe symptoms than their national-level counterparts (p<0.01). Overall, 18.3% of officials had either never had an eye examination or if they had, it was more than 3 years previously. Regarding refractive correction, 4.2% had undergone refractive surgery and 23.9% wear contact lenses when officiating. Clinical vision measures in the football officials were similar to published normative values for young, adult populations and similar between R and AR. Clinically-measured vision did not differ according to officiating level. Visual acuity measured with and without a pinhole disc indicated that around one quarter of participants may be capable of better vision when officiating, as evidenced by better acuity (≥1 line of letters) using the pinhole. Amongst the clinical visual tests we used, we did not find evidence for above-average performance in elite-level football officials. Although the impact of uncorrected mild to moderate refractive error upon officiating performance is unknown, with a greater uptake of eye examinations, visual acuity may be improved in around a quarter of officials.Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/FIS/04650/2013
    • …
    corecore