23,248 research outputs found
Historical spaces as narrative: mapping collective memory onto cinematic space
The following article proposes and develops a single theory: that unlike written history which tends to privilege chronology, teleology and consequentiality, historical films have increasingly abandoned overt means of narration and instead inscribe historical meanings onto cinematic spaces in historical films. The reason for this shift, I argue, is that recent advances in historiography have begun to encourage scepticism towards the human element in reconstructing narratives. In a world bombarded with media rhetoric from all directions, persuasion from traditionally “authoritative” sources such as voiceovers, prologues, marketing material proclaiming the use of historical experts and research, individual viewpoints, eyewitness accounts, etc, all become open to criticism. In the absence of authorial authenticity, and the gradual erosion of trust in both grand narratives and individual insights, the historical film nevertheless still requires some means by which the viewer can be persuaded of its veracity through shared or collective memory, history proper and lived social experience. It is to answer this need, then, that history and historical narratives have begun to place an emphasis on historical spaces as a means to retell history by creating a “cognitive map”, which offers recourse to an intertextual “representational legacy”
Bearing detection in the presence of two sources of varying coherence using the complex cepstrum
The effect of the presence of two acoustic sources (one, the primary, whose location is to be detected) of varying coherence on a cepstral bearing finding procedure is experimentally studied. The coherence between the acoustic sources was altered by adding random noise of various SNR (signal-to-noise ratio) to the input signal of the primary source; the same base signal being fed to both sources. The results demonstrate that, when block liftering is used, the primary source bearing is reliably estimated for coherences as low as gamma sup 2 greater than or approx equal to 0.5. The results also imply that background noise (unreflected) of SNR greater than or approx equal to 10 dB will not markedly affect the accuracy of the bearing estimation algorithm
Spatial reasoning to determine stream network from LANDSAT imagery
In LANDSAT imagery, spectral and spatial information can be used to detect the drainage network as well as the relative elevation model in mountainous terrain. To do this, mixed information of material reflectance in the original LANDSAT imagery must be separated. From the material reflectance information, big visible rivers can be detected. From the topographic modulation information, ridges and valleys can be detected and assigned relative elevations. A complete elevation model can be generated by interpolating values for nonridge and non-valley pixels. The small streams not detectable from material reflectance information can be located in the valleys with flow direction known from the elevation model. Finally, the flow directions of big visible rivers can be inferred by solving a consistent labeling problem based on a set of spatial reasoning constraints
Crystal structure of Schmallenberg orthobunyavirus nucleoprotein-RNA complex reveals a novel RNA sequestration mechanism
Schmallenberg virus (SBV) is a newly emerged orthobunyavirus (family Bunyaviridae) that has caused severe disease in the offspring of farm animals across Europe. Like all orthobunyaviruses, SBV contains a tripartite negative-sense RNA genome that is encapsidated by the viral nucleocapsid (N) protein in the form of a ribonucleoprotein complex (RNP). We recently reported the three-dimensional structure of SBV N that revealed a novel fold. Here we report the crystal structure of the SBV N protein in complex with a 42-nt-long RNA to 2.16 Å resolution. The complex comprises a tetramer of N that encapsidates the RNA as a cross-shape inside the protein ring structure, with each protomer bound to 11 ribonucleotides. Eight bases are bound in the positively charged cleft between the N- and C-terminal domains of N, and three bases are shielded by the extended N-terminal arm. SBV N appears to sequester RNA using a different mechanism compared with the nucleoproteins of other negative-sense RNA viruses. Furthermore, the structure suggests that RNA binding results in conformational changes of some residues in the RNA-binding cleft and the N- and C-terminal arms. Our results provide new insights into the novel mechanism of RNA encapsidation by orthobunyaviruses
COSMOS 2044: Lung morphology study, experiment K-7-28
Researchers examined the effect of microgravity during spaceflight on lung tissue. The ultrastructure of the left lungs of 5 Czechoslovakian Wister rats flown on the 13 day, 19+ hour Cosmos 2044 mission was examined and compared to 5 vivarium and 5 synchronous controls at 1-g conditions, and 5 rats exposed to 14 days of tail suspension. Pulmonary hemorrage and alveolar adema of unknown origin occurred to a greater extent in the flight, tail-suspended, and synchronous control animals, and in the dorsal regions of the lung when compared with the vivarium controls. The cause of these changes, which are possibly due to an increase in pulmonary vascular pressure, requires further investigation
Most Sub-Arcsecond Companions of Kepler Exoplanet Candidate Host Stars are Gravitationally Bound
Using the known detection limits for high-resolution imaging observations and
the statistical properties of true binary and line-of-sight companions, we
estimate the binary fraction of {\it Kepler} exoplanet host stars. Our speckle
imaging programs at the WIYN 3.5-m and Gemini North 8.1-m telescopes have
observed over 600 {\it Kepler} objects of interest (KOIs) and detected 49
stellar companions within 1 arcsecond. Assuming binary stars follow a
log-normal period distribution for an effective temperature range of 3,000 to
10,000 K, then the model predicts that the vast majority of detected
sub-arcsecond companions are long period ( years), gravitationally bound
companions. In comparing the model predictions to the number of real detections
in both observational programs, we conclude that the overall binary fraction of
host stars is similar to the 40-50\% rate observed for field stars
Understanding The Effects Of Stellar Multiplicity On The Derived Planet Radii From Transit Surveys: Implications for Kepler, K2, and TESS
We present a study on the effect of undetected stellar companions on the
derived planetary radii for the Kepler Objects of Interest (KOIs). The current
production of the KOI list assumes that the each KOI is a single star. Not
accounting for stellar multiplicity statistically biases the planets towards
smaller radii. The bias towards smaller radii depends on the properties of the
companion stars and whether the planets orbit the primary or the companion
stars. Defining a planetary radius correction factor , we find that if the
KOIs are assumed to be single, then, {\it on average}, the planetary radii may
be underestimated by a factor of . If typical
radial velocity and high resolution imaging observations are performed and no
companions are detected, this factor reduces to . The correction factor is dependent upon the primary
star properties and ranges from for A and F
stars to for K and M stars. For missions like
K2 and TESS where the stars may be closer than the stars in the Kepler target
sample, observational vetting (primary imaging) reduces the radius correction
factor to . Finally, we show that if the
stellar multiplicity rates are not accounted for correctly, occurrence rate
calculations for Earth-sized planets may overestimate the frequency of small
planets by as much as \%.Comment: 10 pages, 6 Figures, Accepted for publication in The Astrophysical
Journal (Fix typo in Equation 6 of original astroph submission; correction
also submitted to Journal
- …