223 research outputs found

    Development and analytical performance evaluation of an automated chemiluminescent immunoassay for pro-gastrin releasing peptide (ProGRP)

    Get PDF
    Background: Pro-gastrin releasing peptide ( ProGRP) concentrations in blood play an important role in the diagnosis and treatment of patients with small cell lung cancer (SCLC). The automated quantitative ARCHITECT (R) ProGRP assay was developed to aid in the differential diagnosis and in the management of SCLC. The purpose of this study was to evaluate the analytical performance of this chemiluminescent microparticle immunoassay at multiple sites. Methods: ARCHITECT ProGRP measures ProGRP using a two-step sandwich using monoclonal anti-ProGRP antibodies coated on paramagnetic microparticles and labeled with acridinium. Analytical performance of the assay was evaluated at four sites: Abbott Japan, Denka Seiken, the Johns Hopkins University, and the University of Munich. Results: Total precision (%CV) for nine analyte concentrations was between 2.2 and 5.7. The analytical sensitivity of the assay was between 0.20 pg/mL and 0.88 pg/mL. The functional sensitivity at 20% CV was between 0.66 pg/mL and 1.73 pg/mL. The assay was linear up to 50,000 pg/mL using a 1:10 autodilution protocol. The calibration curve was stable for 30 days. Comparison with the Fujirebio microtiter plate enzyme-linked immunosorbent assay (EIA) ProGRP assay gave a slope of 0.93 and a correlation coefficient (r) of 0.99. Conclusions: These results demonstrate that the ARCHITECT ProGRP assay has excellent sensitivity, precision, and correlation to a reference method. This assay provides a convenient automated method for ProGRP measurement in serum and plasma in hospitals and clinical laboratories. Clin Chem Lab Med 2009;47:1557-63

    Does engagement build empathy for shared water resources? Results from the use of the interpersonal reactivity index during a mobile water allocation experimental decision laboratory

    Get PDF
    Currently, there are no tools that measure improvements in levels of empathy among diverse water stakeholders participating in transboundary decision-making. In this study, we used an existing empathy scale from clinical psychology during an Experimental Decision Laboratory (EDL) where participants allocated water across a transboundary basin during minor and major drought conditions. We measured changes in empathy using a pre-test/post-test design and triangulated quantitative results with open-ended survey questions. Results were counter-intuitive. For most participants, levels of the four components of empathy decreased after participating in the EDL; however, significant demographically-driven differences emerged. Qualitative results confounded the problem through the capture of participant perceptions of increased overall empathy and perspective taking specifically. Implications for methodological tool development, as well as practice for water managers and researchers are discussed. Water empathy is a particularly sensitive construct that requires specialized intervention and measurement

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes
    • 

    corecore