42 research outputs found

    Spherical nucleic acids as an infectious disease vaccine platform

    Get PDF
    Despite recent efforts demonstrating that organization and presentation of vaccine components are just as important as composition in dictating vaccine efficacy, antiviral vaccines have long focused solely on the identification of the immunological target. Herein, we describe a study aimed at exploring how vaccine component presentation in the context of spherical nucleic acids (SNAs) can be used to elicit and maximize an antiviral response. Using COVID-19 as a topical example of an infectious disease with an urgent need for rapid vaccine development, we designed an antiviral SNA vaccine, encapsulating the receptor-binding domain (RBD) subunit into a liposome and decorating the core with a dense shell of CpG motif toll-like receptor 9 agonist oligonucleotides. This vaccine induces memory B cell formation in human cells, and in vivo administration into mice generates robust binding and neutralizing antibody titers. Moreover, the SNA vaccine outperforms multiple simple mixtures incorporating clinically employed adjuvants. Through modular changes to SNA structure, we uncover key relationships and proteomic insights between adjuvant and antigen ratios, concepts potentially translatable across vaccine platforms and disease models. Importantly, when humanized ACE2 transgenic mice were challenged in vivo against a lethal live virus, only mice that received the SNA vaccine had a 100% survival rate and lungs that were clear of virus by plaque analysis. This work underscores the potential for SNAs to be implemented as an easily adaptable and generalizable platform to fight infectious disease and demonstrates the importance of structure and presentation in the design of next-generation antiviral vaccines

    Small molecule inhibitor of lipoteichoic acid synthesis is an antibiotic for Gram-positive bacteria

    Get PDF
    The current epidemic of infections caused by antibiotic-resistant Gram-positive bacteria requires the discovery of new drug targets and the development of new therapeutics. Lipoteichoic acid (LTA), a cell wall polymer of Gram-positive bacteria, consists of 1,3-polyglycerol-phosphate linked to glycolipid. LTA synthase (LtaS) polymerizes polyglycerol-phosphate from phosphatidylglycerol, a reaction that is essential for the growth of Gram-positive bacteria. We screened small molecule libraries for compounds inhibiting growth of Staphylococcus aureus but not of Gram-negative bacteria. Compound 1771 [2-oxo-2-(5-phenyl-1,3,4-oxadiazol-2-ylamino)ethyl 2-naphtho[2,1-b]furan-1-ylacetate] blocked phosphatidylglycerol binding to LtaS and inhibited LTA synthesis in S. aureus and in Escherichia coli expressing ltaS. Compound 1771 inhibited the growth of antibiotic-resistant Gram-positive bacteria and prolonged the survival of mice with lethal S. aureus challenge, validating LtaS as a target for the development of antibiotics

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Yersinia pestis IS1541 Transposition Provides for Escape from Plague Immunityâ–¿

    No full text
    Yersinia pestis is perhaps the most feared infectious agent due to its ability to cause epidemic outbreaks of plague disease in animals and humans with high mortality. Plague infections elicit strong humoral immune responses against the capsular antigen (fraction 1 [F1]) of Y. pestis, and F1-specific antibodies provide protective immunity. Here we asked whether Y. pestis generates mutations that enable bacterial escape from protective immunity and isolated a variant with an IS1541 insertion in caf1A encoding the F1 outer membrane usher. The caf1A::IS1541 insertion prevented assembly of F1 pili and provided escape from plague immunity via F1-specific antibodies without a reduction in virulence in mouse models of bubonic or pneumonic plague. F1-specific antibodies interfere with Y. pestis type III transport of effector proteins into host cells, an inhibitory effect that was overcome by the caf1A::IS1541 insertion. These findings suggest a model in which IS1541 insertion into caf1A provides for reversible changes in envelope structure, enabling Y. pestis to escape from adaptive immune responses and plague immunity

    Yersinia pestis caf1 Variants and the Limits of Plague Vaccine Protectionâ–¿

    No full text
    Yersinia pestis, the highly virulent agent of plague, is a biological weapon. Strategies that prevent plague have been sought for centuries, and immunization with live, attenuated (nonpigmented) strains or subunit vaccines with F1 (Caf1) antigen is considered effective. We show here that immunization with live, attenuated strains generates plague-protective immunity and humoral immune responses against F1 pilus antigen and LcrV. Y. pestis variants lacking caf1 (F1 pili) are not only fully virulent in animal models of bubonic and pneumonic plague but also break through immune responses generated with live, attenuated strains or F1 subunit vaccines. In contrast, immunization with purified LcrV, a protein at the tip of type III needles, generates protective immunity against the wild-type and the fully virulent caf1 mutant strain, in agreement with the notion that LcrV can elicit vaccine protection against both types of virulent plague strains

    Immunization with Recombinant V10 Protects Cynomolgus Macaques from Lethal Pneumonic Plagueâ–¿

    No full text
    Vaccine and therapeutic strategies that prevent infections with Yersinia pestis have been sought for over a century. Immunization with live attenuated (nonpigmented) strains and immunization with subunit vaccines containing recombinant low-calcium-response V antigen (rLcrV) and recombinant F1 (rF1) antigens are considered effective in animal models. Current antiplague subunit vaccines in development for utilization in humans contain both antigens, either as equal concentrations of the two components (rF1 plus rLcrV) or as a fusion protein (rF1-rLcrV). Here, we show that immunization with either purified rLcrV (a protein at the tip of type III needles) or a variant of this protein, recombinant V10 (rV10) (lacking amino acid residues 271 to 300), alone or in combination with rF1, prevented pneumonic lesions and disease pathogenesis. In addition, passive immunization studies showed that specific antibodies of macaques immunized with rLcrV, rV10, or rF1, either alone or in combination, conferred protection against bubonic plague challenge in mice. Finally, we found that when we compared the reactivities of anti-rLcrV and anti-rV10 immune sera from cynomolgus macaques, BALB/c mice, and brown Norway rats with LcrV-derived peptides, rV10, but not rLcrV immune sera, lacked antibodies recognizing linear LcrV oligopeptides

    Evidence of a putative glycosaminoglycan binding site on the glycosylated SARS-CoV-2 spike protein N-terminal domain

    Get PDF
    SARS-CoV-2 has rapidly spread throughout the world's population since its initial discovery in 2019. The virus infects cells via a glycosylated spike protein located on its surface. The protein primarily binds to the angiotensin-converting enzyme-2 (ACE2) receptor, using glycosaminoglycans (GAGs) as co-receptors. Here, we performed bioinformatics and molecular dynamics simulations of the spike protein to investigate the existence of additional GAG binding sites on the receptor-binding domain (RBD), separate from previously reported heparin-binding sites. A putative GAG binding site in the N-terminal domain (NTD) of the protein was identified, encompassing residues 245-246. We hypothesized that GAGs of a sufficient length might bridge the gap between this site and the PRRARS furin cleavage site, including the mutation S247R. Docking studies using GlycoTorch Vina and subsequent MD simulations of the spike trimer in the presence of dodecasaccharides of the GAGs heparin and heparan sulfate supported this possibility. The heparan sulfate chain bridged the gap, binding the furin cleavage site and S247R. In contrast, the heparin chain bound the furin cleavage site and surrounding glycosylation structures, but not S247R. These findings identify a site in the spike protein that favors heparan sulfate binding that may be particularly pertinent for a better understanding of the recent UK and South African strains. This will also assist in future targeted therapy programs that could include repurposing clinical heparan sulfate mimetics

    Evolution of immune genes is associated with the Black Death

    No full text
    International audienceInfectious diseases are among the strongest selective pressures driving human evolution1,2. This includes the single greatest mortality event in recorded history, the first outbreak of the second pandemic of plague, commonly called the Black Death, which was caused by the bacterium Yersinia pestis3. This pandemic devastated Afro-Eurasia, killing up to 30-50% of the population4. To identify loci that may have been under selection during the Black Death, we characterized genetic variation around immune-related genes from 206 ancient DNA extracts, stemming from two different European populations before, during and after the Black Death. Immune loci are strongly enriched for highly differentiated sites relative to a set of non-immune loci, suggesting positive selection. We identify 245 variants that are highly differentiated within the London dataset, four of which were replicated in an independent cohort from Denmark, and represent the strongest candidates for positive selection. The selected allele for one of these variants, rs2549794, is associated with the production of a full-length (versus truncated) ERAP2 transcript, variation in cytokine response to Y. pestis and increased ability to control intracellular Y. pestis in macrophages. Finally, we show that protective variants overlap with alleles that are today associated with increased susceptibility to autoimmune diseases, providing empirical evidence for the role played by past pandemics in shaping present-day susceptibility to disease
    corecore